Skip to main content

Advertisement

Log in

Prevention of membrane damage in patient on peritoneal dialysis with new peritoneal dialysis solutions

  • Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Peritoneal dialysis (PD) is now an established and successful alternative to hemodialysis. Multiple studies have confirmed its equivalent dialysis adequacy, mortality and fluid balance status, at least for the first 4–5 years. Peritoneal membrane failure is now one of the leading cause of technique failure. This review describes the role of glucose, glucose degradation product, pH, lactate, advanced glycosylation end product (AGE) in causing this membrane damage, and gives insight how the use of newer peritoneal dialysis fluids (PDFs) containing icodextrin, amino acids and bicarbonate buffer can prevent peritoneal membrane damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fenton SS, Schaubel DE, Desmeules M, Morrison HI, Mao Y, Copleston P, Jeffery JR, Kjellstrand CM (1997) Hemodialysis versus PD a comparison of adjusted mortality Rates. Am J Kidney Dis 30(3):334–342

    PubMed  CAS  Google Scholar 

  2. Davies SJ, Phillips L, Griffiths AM, Russell LH, Naish PF, Russell GI (1998) What really happens to people on long-term peritoneal dialysis? Kidney Int 54(6):2207–2217

    Article  PubMed  CAS  Google Scholar 

  3. Di Paolo N, Sacchi G, Garosi G, Taganelli P, Gaggiotti E (2005) SPS and sclerosing peritonitis: related or distinct entities? Int J Artif Organs 28(2):117–128

    PubMed  Google Scholar 

  4. Gotloib L, Shostak A, Wajsbrot V (2000) Functional structure of peritoneum as dialyzing membrane, Text book of peritoneal dialysis, 2nd edn. Kluwer Academic Publisher, London, pp 37–106

    Google Scholar 

  5. Nagy JA (1996) Peritoneal membrane morphology and funfsction. Kidney Int 50(Suppl 56):S2–S11

    Google Scholar 

  6. Pannekeet MM, Mulder JB, Weening JJ, Struijk DG, Zweers MM, Krediet RT (1996) Demonstration of aquaporin-chip in peritoneal tissue of uraemic and CAPD patients. Perit Dial Int 16(Suppl 1):S54–S57

    PubMed  Google Scholar 

  7. Williams JD, Craig KJ, Topley N, Von Ruhland C, Fallon M, Newman GR, Mackenzie RK, Williams GT (2002) Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol 13:470–479

    PubMed  Google Scholar 

  8. Combet S, Ferrier ML, Van Landschoot M, Stoenoiu M, Moulin P, Miyata T, Lameire N, Devuyst O (2001) Chronic uremia induces permeability changes, increased nitric oxide synthase expression, and structural modifications in the peritoneum. J Am Soc Nephrol 12(10):2146–2157

    PubMed  CAS  Google Scholar 

  9. Davies SJ, Phillips L, Naish PF, Russell GI (2001) Peritoneal glucose exposure and changes in membrane solute transport with time on peritoneal dialysis. J Am Soc Nephrol 12(5):1046–1051

    PubMed  CAS  Google Scholar 

  10. Honda K, Nitta K, Horita S, Yumura W, Nihei H (1996) Morphological changes in the peritoneal vasculature of patients on CAPD with ultrafiltration failure. Nephron 72:171–176

    PubMed  CAS  Google Scholar 

  11. Plum J, Hermann S, Fussholler A, Schoenicke G, Donner A, Rohrborn A, Grabensee B (2001) Peritoneal sclerosis in peritoneal dialysis patients related to dialysis settings and peritoneal transport properties. Kidney Int 78(Suppl):S42–S47

    Article  CAS  Google Scholar 

  12. Sanusi AA, Zweers MM, Weening JJ, de Waart DR, Struijk DG, Krediet RT (2001) Expression of cancer antigen 125 by peritoneal mesothelial cells is not influenced by duration of peritoneal dialysis. Perit Dial Int 21(5):495–500

    PubMed  CAS  Google Scholar 

  13. Krediet RT (2001) Dialysate cancer antigen 125 concentration as marker of peritoneal membrane status in patients treated with chronic peritoneal dialysis. Perit Dial Int 21(6):560–567

    PubMed  CAS  Google Scholar 

  14. Naiki Y, Maeda Y, Matsuo K, Yonekawa S, Sakaguchi M, Iwamoto I, Hasegawa H, Kanamaru A (2003) Involvement of TGFβ1 signal for peritoneal sclerosing in continuous ambulatory peritoneal dialysis. J Nephrol 16:95–102

    Article  PubMed  CAS  Google Scholar 

  15. Yanez-Mo M, Lara-Pezzi E, Selgas R, Ramirez-Huesca M, Dominguez-Jimenez C, Jimenez-Heffernan JA, Aguilera A, Sanchez-Tomero JA, Bajo MA, Alvarez V, Castro MA, del Peso G, Cirujeda A, Gamallo C, Sanchez-Madrid F, Lopez-Cabrera M (2003) Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial Cells. N Engl J Med 348(5):403–413

    Article  PubMed  Google Scholar 

  16. Yang AH, Chen JY, Lin JK (2003) Myofibroblastic conversion of mesothelial cells. Kidney Int 63(4):1530–1539

    Article  PubMed  Google Scholar 

  17. Margetts PJ, Kolb M, Galt T, Hoff CM, Shockley TR, Gauldie J (2001) Gene transfer of transforming growth factor-beta1 to the rat peritoneum: effects on membrane function. J Am Soc Nephrol 12(10):2029–2039

    PubMed  CAS  Google Scholar 

  18. Lin CY, Chen WP, Yang LY, Chen A, Huang TP (1998) Persistent transforming growth factor-beta1 expression may predict peritoneal fibrosis in CAPD patients with frequent peritonitis occurrence. Am J Nephrol 18:513–519

    Article  PubMed  CAS  Google Scholar 

  19. Yokoi H, Sugawara A, Mukoyama M, Mori K, Makino H, Suganami T, Nagae T, Yahata K, Fujinaga Y, Tanaka I, Nakao K (2001) Role of connective tissue growth factor in profibrotic action of transforming growth factor-beta: a potential target for preventing renal fibrosis. Yokoi H Am J Kidney Dis 38(4 Suppl 1):S134–S138

    CAS  Google Scholar 

  20. Aufricht C, Endemann M, Bidmon B, Arbeiter K, Mueller T, Regele H, Herkner K, Eickelberg O (2001) Peritoneal dialysis fluids induce the stress response in human mesothelial Cells. Perit Dial Int 21(1):85–88

    PubMed  CAS  Google Scholar 

  21. Ha H, Cha MK, Choi HN, Lee HB (2002) Effects of peritoneal dialysis solutions on the secretion of growth factors and extracellular matrix proteins by human peritoneal mesothelial cells. Perit Dial Int 22:171–177

    PubMed  CAS  Google Scholar 

  22. Tamura M, Osajima A, Nakayamada S, Anai H, Kabashima N, Kanegae K, Ota T, Tanaka Y, Nakashima Y (2003) High glucose levels inhibit focal adhesion kinase-mediated wound healing of rat peritoneal mesothelial cells. Kidney Int 63(2):722–731

    Article  PubMed  CAS  Google Scholar 

  23. Naiki Y, Matsuo K, Matsuoka T, Maeda Y (2005) Possible role of hepatocyte growth factor in regeneration of human peritoneal mesothelial cells. Int J Artif Organs 28(2):141–149

    PubMed  CAS  Google Scholar 

  24. Wieslander AP, Kjellstrand PT, Rippe B (1995) Heat sterilization of glucose-containing fluids for peritoneal dialysis: biological consequences of chemical alterations. Perit Dial Int 15(Suppl 7):S52–S59

    PubMed  CAS  Google Scholar 

  25. Okada H, Inoue T, Kanno Y, Kobayashi T, Watanabe Y, Ban S, Neilson EG, Suzuki H (2003) Selective depletion of fibroblasts preserves morphology and the functional integrity of peritoneum in transgenic mice with peritoneal fibrosing syndrome. Kidney Int 64(5):1722–1732

    Article  PubMed  CAS  Google Scholar 

  26. Lane A, Johnson DW, Pat B, Winterford C, Endre Z, Wei M, Gobe GC (2002) Interacting roles of myofibroblasts, apoptosis and fibrogenic growth factors in the pathogenesis of renal tubulo-interstitial fibrosis. Growth Factors 20(3):109–119

    Article  PubMed  CAS  Google Scholar 

  27. el Nahas AM, Muchaneta-Kubara EC, Essawy M, Soylemezoglu O (1997) Renal fibrosis: insights into pathogenesis and treatment. Int J Biochem Cell Biol 29(1):55–62

    Article  PubMed  CAS  Google Scholar 

  28. Breborowicz A, Rodela H, Oreopoulos DG (1992) Toxicity of osmotic solutes on human mesothelial cells in vitro. Kidney Int 41(5):1280–1285

    PubMed  CAS  Google Scholar 

  29. Kang DH, Hong YS, Lim HJ, Choi JH, Han DS, Yoon KI (1999) High glucose solution and spent dialysate stimulate the synthesis of transforming growth factor-beta1 of human peritoneal mesothelial cells: effect of cytokine costimulation. Perit Dial Int 19(3):221–230

    PubMed  CAS  Google Scholar 

  30. De Vriese AS, Tilton RG, Stephan CC, Lameire NH (2001) Vascular endothelial growth factor is essential for hyperglycemia-induced structural and functional alterations of the peritoneal membrane. J Am Soc Nephrol 12(8):1734–1741

    PubMed  Google Scholar 

  31. van Westrhenen R, Aten J, Aberra M, Dragt CA, Deira G, Krediet RT (2005) Effects of inhibition of the polyol pathway during chronic peritoneal exposure to a dialysis solution. Perit Dial Int 25(Suppl 3):S18–S21

    PubMed  Google Scholar 

  32. Bertoli SV, Buzzi L, Ciurlino D, Maccario M, Traversi L, Martino S, Procaccio M (2005) Histological and functional characteristics of peritoneal membrane in peritoneal sclerosis of PD patients. Int J Artif Organs 28(2):112–116

    PubMed  CAS  Google Scholar 

  33. Wieslander AP, Nordia MK, Kjellstrand PTT, Boberg UC (1991) Toxicity of peritoneal dialysis fluids on cultured fibroblasts, L-929. Kidney Int 40:77–79

    PubMed  CAS  Google Scholar 

  34. Witowski J, Bender TO, Wisniewska-Elnur J, Ksiazek K, Passlick-Deetjen J, Breborowicz A, Jorres A (2003) Mesothelial toxicity of peritoneal dialysis fluids is related primarily to glucose degradation products, not to glucose per se. Perit Dial Int 23(4):381–390

    PubMed  CAS  Google Scholar 

  35. Witowski J, Korybalska K, Ksiazek K, Wisniewska-Elnur J, Jorres A, Lage C, Schaub TP, Passlick-Deetjen J, Breborowicz A, Grzegorzewska A, Ksiazek A, Liberek T, Lichodziejewska-Niemierko M, Majdan M, Rutkowski B, Stompor T, Sulowicz W (2004) Peritoneal dialysis with solutions low in glucose degradation products is associated with improved biocompatibility profile towards peritoneal mesothelial cells. Nephrol Dial Transplant 19(4):917–924

    Article  PubMed  CAS  Google Scholar 

  36. Wieczorowska-Tobis K, Polubinska A, Schaub TP, Schilling H, Wisniewska J, Witowski J, Passlick-Deetjen J, Breborowicz A (2001) Influence of neutral-pH dialysis solutions on the peritoneal membrane: a long-term investigation in rats. Perit Dial Int 21(Suppl 3):S108–S113

    PubMed  Google Scholar 

  37. Morgan LW, Wieslander A, Davies M, Horiuchi T, Ohta Y, Beavis MJ, Craig KJ, Williams JD, Topley N (2003) Glucose degradation products (GDP) retard remesothelialization independently of d-glucose concentration. Kidney Int 64(5):1854–1866

    Article  PubMed  CAS  Google Scholar 

  38. Breborowicz A, Witowski J, Polubinska A, Pyda M, Oreopoulos D (2004) l-2-oxothiazolidine-4-carboxylic acid reduces in vitro cytotoxicity of glucose degradation products. Nephrol Dial Transplant 19(12):3005–3011

    Article  PubMed  CAS  Google Scholar 

  39. De Vriese AS, Flyvbjerg A, Mortier S, Tilton RG, Lameire NH (2003) Inhibition of the interaction of AGE-RAGE prevents hyperglycemia-induced fibrosis of the peritoneal membrane. J Am Soc Nephrol 14(8):2109–2118

    PubMed  Google Scholar 

  40. Nakayama M, Kawaguchi Y, Yamada K, Hasegawa T, Takazoe K, Katoh N, Hayakawa H, Osaka N, Yamamoto H, Ogawa A, Kubo H, Shigematsu T, Sakai O, Horiuchi S (1997) Immunohistochemical detection of advanced glycosylation end-products in the peritoneum and its possible pathophysiological role in CAPD. Kidney Int 51(1):182–186

    PubMed  CAS  Google Scholar 

  41. Zareie M, Tangelder GJ, ter Wee PM, Hekking LH, van Lambalgen AA, Keuning ED, Schadee-Eestermans IL, Schalkwijk CG, Beelen RH, van den Born J (2005) Beneficial effects of aminoguanidine on peritoneal microcirculation and tissue remodelling in a rat model of PD. Nephrol Dial Transplant 20(12):2783–2792

    Article  PubMed  CAS  Google Scholar 

  42. Mactier RA, Sprosen TS, Gokal R et al (1998) Bicarbonate and bicarbonate/lactate peritoneal dialysis solutions for the treatment of infusion pain. Kidney Int 53:1061–1067

    Article  PubMed  CAS  Google Scholar 

  43. Schwenger V, Morath C, Salava A, Amann K, Seregin Y, Deppisch R, Ritz E, Bierhaus A, Nawroth PP, Zeier M (2006) Damage to the peritoneal membrane by glucose degradation products is mediated by the receptor for advanced glycosylation end-products. J Am Soc Nephrol 17(1):199–207

    Article  PubMed  CAS  Google Scholar 

  44. Wong TY, Phillips AO, Witowski J, Topley N (2003) Glucose-mediated induction of TGFβ1 and MCP-1 in mesothelial cells in vitro is osmolality and polyol pathway dependent. Kidney Int 63(4):1404–1416

    Article  PubMed  CAS  Google Scholar 

  45. Topley N, Coles GA, Williams JD (1994) Biocompatibility studies on peritoneal cells. Perit Dial Int 14(Suppl 3):S21–S28

    PubMed  Google Scholar 

  46. Mahiout A, Brunkhorst R (1995) Pyruvate anions neutralize peritoneal dialysate cytotoxicity. Nephrol Dial Transplant 10(3):391–394

    PubMed  CAS  Google Scholar 

  47. Zareie M, Hekking LH, Welten AG, Driesprong BA, Schadee-Eestermans IL, Faict D, Leyssens A, Schalkwijk CG, Beelen RH, ter Wee PM, van den Born J (2003) Contribution of lactate buffer, glucose and glucose degradation products to peritoneal injury in vivo. Nephrol Dial Transplant 18(12):2629–2637

    Article  PubMed  CAS  Google Scholar 

  48. Zareie M, Keuning ED, ter  Wee PM, Schalkwijk CG, Beelen RH, van den Born J (2005) Improved biocompatibility of bicarbonate/lactate-buffered PDF is not related to pH. Nephrol Dial Transplant 2005 Nov 1 [Epub ahead of print]

  49. Plum J, Schoenicke G, Grabensee B (1997) Osmotic agents and buffers in peritoneal dialysis solution: monocyte cytokine release and in vitro cytotoxicity. Am J Kidney Dis 30(3):413–422

    PubMed  CAS  Google Scholar 

  50. Mortier S, Faict D, Schalkwijk CG, Lameire NH, De Vriese AS (2004) Long-term exposure to new peritoneal dialysis solutions: effects on the peritoneal membrane. Kidney Int 66:1257–1265

    Article  PubMed  CAS  Google Scholar 

  51. Mortier S, Faict D, Lameire NH, De Vriese AS (2005) Benefits of switching from a conventional to a low-GDP bicarbonate/lactate-buffered dialysis solution in a rat model. Kidney Int 67(4):1559–1565

    Article  PubMed  CAS  Google Scholar 

  52. Hekking LH, Zareie M, Driesprong BA, Faict D, Welten AG, de Greeuw I, Schadee-Eestermans IL, Havenith CE, van den Born J, ter Wee PM, Beelen RH (2001) Better preservation of peritoneal morphologic features and defense in rats after long-term exposure to a bicarbonate/lactate-buffered solution. J Am Soc Nephrol 12(12):2775–2786

    PubMed  CAS  Google Scholar 

  53. Sundaram S, Cendoroglo M, Cooker LA, Jaber BL, Faict D, Holmes CJ, Pereira BJ (1997) Effect of two-chambered bicarbonate lactate-buffered peritoneal dialysis fluids on peripheral blood mononuclear cell and polymorphonuclear cell function in vitro. Am J Kidney Dis 30(5):680–689

    PubMed  CAS  Google Scholar 

  54. Otte K, Gonzalez MT, Bajo MA et al (2003) Clinical experience with a new bicarbonate (25 mmol/L)/lactate (10 mmol/L) peritoneal dialysis solution. Perit Dial Int 23:138–145

    PubMed  CAS  Google Scholar 

  55. Tranaeus A (2000) A long-term study of a bicarbonate/lactate-based peritoneal dialysis solution—Clinical benefits. The Bicarbonate/Lactate Study Group. Perit Dial Int 20:516–523

    PubMed  CAS  Google Scholar 

  56. Lee HY, Park HC, Seo BJ, Do JY, Yun SR, Song HY, Kim YH, Kim YL, Kim DJ, Kim YS, Ahn C, Kim MJ, Shin SK (2005) Superior patient survival for continuous ambulatory peritoneal dialysis patients treated with a peritoneal dialysis fluid with neutral pH and low glucose degradation product concentration (Balance). Perit Dial Int 25(3):248–255

    PubMed  Google Scholar 

  57. Jones S, Holmes CJ, Krediet RT, Mackenzie R, Faict D, Tranaeus A, Williams JD, Coles GA, Topley N (2001) Bicarbonate/Lactate Study Group, Bicarbonate/lactate-based peritoneal dialysis solution increases cancer antigen 125 and decreases hyaluronic acid levels. Kidney Int 59(4):1529–1538

    Article  PubMed  CAS  Google Scholar 

  58. Fusshoeller A, Plail M, Grabensee B, Plum J (2004) Biocompatibility pattern of a bicarbonate/lactate-buffered peritoneal dialysis fluid in APD: a prospective, randomized study. Nephrol Dial Transplant 19(8):2101–2106

    Article  PubMed  CAS  Google Scholar 

  59. Williams JD, Topley N, Craig KJ, Mackenzie RK, Pischetsrieder M, Lage C, Passlick-Deetjen J (2004) Euro Balance Trial Group, The Euro-Balance Trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. Kidney Int 66(1):408–418

    Article  PubMed  Google Scholar 

  60. Haas S, Schmitt CP, Arbeiter K, Bonzel KE, Fischbach M, John U, Pieper AK, Schaub TP, Passlick-Deetjen J, Mehls O, Schaefer F (2003) Improved acidosis correction and recovery of mesothelial cell mass with neutral-pH bicarbonate dialysis solution among children undergoing automated peritoneal dialysis. J Am Soc Nephrol 14(10):2632–2638

    Article  PubMed  Google Scholar 

  61. Cancarini GC, Faict D, De Vos C et al (1998) Clinical evaluation of a peritoneal dialysis solution with 33 mmol/L bicarbonate. Perit Dial Int 18:576–582

    PubMed  CAS  Google Scholar 

  62. Topley N, Kaur D, Petersen MM et al (1996) In vitro effects of bicarbonate and bicarbonate-lactate buffered peritoneal dialysis solutions on mesothelial and neutrophil function. J Am Soc Nephrol 7:218–224

    PubMed  CAS  Google Scholar 

  63. Williams P, Mariott J, Coles G et al (2000) Insulin efficacy with a new bicarbonate/lactate peritoneal dialysis solution. Perit Dial Int 20:467–469

    PubMed  CAS  Google Scholar 

  64. Sporsen TS, Miserque D, Story KO, Divino  Filho JC (2002) Significant reduction in peritonitis in patients prescribed the biocompatible PD Solution physioneal: first data from the European PD Solution registry, Peritoneal dialysis International Jan 2002:22:1:148 (abstract)

  65. Brulez HF, Dekker HA, Oe PL, Verbeelen D, ter Wee PM, Verbrugh HA (1996) Biocompatibility of a 1.1% amino acid-containing peritoneal dialysis fluid compared to a 2.27% glucose-based peritoneal dialysis fluid. Nephron 74(1):26–32

    Article  PubMed  CAS  Google Scholar 

  66. Chan TM, Leung JK, Sun Y, Lai KN, Tsang RC, Yung S (2003) Different effects of amino acid-based and glucose-based dialysate from peritoneal dialysis patients on mesothelial cell ultrastructure and function. Nephrol Dial Transplant 18(6):1086–1094

    Article  PubMed  CAS  Google Scholar 

  67. Garosi G, Gaggiotti E, Monaci G, Brardi S, Di Paolo N (1998) Biocompatibility of a peritoneal dialysis solution with amino acids: histological evaluation in the rabbit. Perit Dial Int.18(6):610–619

    CAS  Google Scholar 

  68. Zareie M, van Lambalgen AA, ter Wee PM, Hekking LH, Keuning ED, Schadee-Eestermans IL, Faict D, Degreve B, Tangelder GJ, Beelen RH, van den Born J (2005) Better preservation of the peritoneum in rats exposed to amino acid-based peritoneal dialysis fluid. Perit Dial Int 25(1):58–67

    PubMed  CAS  Google Scholar 

  69. Riegel W, Ulrich C, Friedrichsohn C, Passlick-Deetjen J, Kohler H (1999). Liver cell reactive components in peritoneal dialysis fluids. Miner Electrolyte Metab 25(4–6):373–379

    Article  PubMed  CAS  Google Scholar 

  70. Thomas S, Schenk U, Fischer F et al (1997) In vitro effects of glucose polymer-containing peritoneal dialysis fluids on phagocytic activity. Am J Kidney Dis 29:246–253

    PubMed  CAS  Google Scholar 

  71. Bajo MA, Selgas R, Castro MA et al (2000) Icodextrin effluent leads to a greater proliferation than glucose effluent of human mesothelial cells studies ex vivo. Perit Dial Int 20:742–747

    PubMed  CAS  Google Scholar 

  72. de Fijter CW, Verbrugh HA, Oe LP, Heezius E, Donker AJ, Verhoef J, Gokal R (1993) Biocompatibility of a glucose-polymer-containing peritoneal dialysis fluid. Am J Kidney Dis 21(4):411–418

    PubMed  Google Scholar 

  73. Barre DE, Chen C, Cooker L, Moberly JB (1999) Decreased in vitro formation of AGEs with extraneal solution compared to dextrose-containing peritoneal dialysis solutions. Adv Perit Dial 15:12–16

    PubMed  CAS  Google Scholar 

  74. Cooker LA, Choo CG, Luneburg P, Lamela J, Holmes CJ (1999) Effect of icodextrin peritoneal dialysis solution on cell proliferation in vitro. Adv Perit Dial 15:17–20

    PubMed  CAS  Google Scholar 

  75. Martis L, Patel M, Giertych J, Mongoven J, Taminne M, Perrier MA, Mendoza O, Goud N, Costigan A, Denjoy N, Verger C, Owen WF Jr (2005) Aseptic peritonitis due to peptidoglycan contamination of pharmacopoeia standard dialysis solution. Lancet 365(9459):588–594

    PubMed  CAS  Google Scholar 

  76. Martikainen T, Ekstrand A, Honkanen E, Teppo AM, Gronhagen-Riska C (2005) Do interleukin-6, hyaluronan, soluble intercellular adhesion molecule-1 and cancer antigen 125 in dialysate predict changes in peritoneal function? Scand J Urol Nephrol 39(5):410–416

    Article  PubMed  CAS  Google Scholar 

  77. Ueda Y, Miyata T, Goffin E, Yoshino A, Inagi R, Ishibashi Y, Izuhara Y, Saito A, Kurokawa K, Van Ypersele De Strihou C (2000) Effect of dwell time on carbonyl stress using icodextrin and amino acid peritoneal dialysis fluids. Kidney Int 58(6):2518–2524

    Article  PubMed  CAS  Google Scholar 

  78. Imholz AL, Brown CB, Koomen GC, Arisz L, Krediet RT (1993) The effect of glucose polymers on water removal and protein clearances during CAPD. Adv Perit Dial 9:25–30

    PubMed  CAS  Google Scholar 

  79. Wilkie ME, Plant MJ, Edwards L, Brown CB (1997) Icodextrin 7.5% dialysate solution (glucose polymer) in patients with ultrafiltration failure: extension of CAPD technique survival. Perit Dial Int 17(1):84–87

    PubMed  CAS  Google Scholar 

  80. Johnson DW, Arndt M, O’Shea A, Watt R, Hamilton J, Vincent K (2001) Icodextrin as salvage therapy in peritoneal dialysis patients with refractory fluid overload. BMC Nephrol 2:2

    Article  PubMed  CAS  Google Scholar 

  81. Mistry CD, Gokal R, Peers E (1994) A randomized multicenter clinical trial comparing isosmolar icodextrin with hyperosmolar glucose solutions in CAPD. MIDAS Study Group. Multicenter Investigation of Icodextrin in Ambulatory Peritoneal Dialysis. Kidney Int 46(2):496–503

    PubMed  CAS  Google Scholar 

  82. Wolfson M, Piraino B, Hamburger RJ, Morton AR (2002) Icodextrin Study Group, A randomized controlled trial to evaluate the efficacy and safety of icodextrin in peritoneal dialysis. Am J Kidney Dis 40(5):1055–1065

    Article  PubMed  CAS  Google Scholar 

  83. Finkelstein F, Healy H, Abu-Alfa A, Ahmad S, Brown F, Gehr T, Nash K, Sorkin M, Mujais S (2005) Superiority of icodextrin compared with 4.25% dextrose for peritoneal ultrafiltration. J Am Soc Nephrol 16(2):546–554

    Article  PubMed  CAS  Google Scholar 

  84. le Poole CY, Welten AG, Weijmer MC, Valentijn RM, van Ittersum FJ, ter Wee PM (2005) Initiating CAPD with a regimen low in glucose and glucose degradation products, with icodextrin and amino acids (NEPP) is safe and efficacious. Perit Dial Int 25(Suppl 3):S64–S68

    PubMed  Google Scholar 

  85. Martikainen TA, Teppo AM, Gronhagen-Riska C, Ekstrand AV (2005) Glucose-free dialysis solutions: inductors of inflammation or preservers of peritoneal membrane? Perit Dial Int 25(5):453–460

    PubMed  CAS  Google Scholar 

  86. Marshall J, Jennings P, Scott A, Fluck RJ, McIntyre CW (2003) Glycemic control in diabetic CAPD patients assessed by continuous glucose monitoring system (CGMS). Kidney Int 64(4):1480–1486

    Article  PubMed  Google Scholar 

  87. European best practice guidelines, Nephrology dialysis transplantation 2005. 20(Suppl 9):ix16–ix 20

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mufazzal Ahmad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, M., Shah, H., Pliakogiannis, T. et al. Prevention of membrane damage in patient on peritoneal dialysis with new peritoneal dialysis solutions. Int Urol Nephrol 39, 299–312 (2007). https://doi.org/10.1007/s11255-006-9064-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-006-9064-y

Keywords

Navigation