Skip to main content
Log in

New General Solutions of Ordinary Differential Equations and The Methods for The Solution of Boundary-Value Problems

  • Published:
Ukrainian Mathematical Journal Aims and scope

New general solutions of ordinary differential equations are introduced and their properties are established. We develop new methods for the solution of boundary-value problems based on the construction and solution of the systems of algebraic equations for arbitrary vectors of the general solutions. An approach to finding the initial approximation to the required solution of a nonlinear boundary-value problem is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Aziz, Numerical Solutions for Ordinary Differential Equations, Academic Press, New York (1975).

    Google Scholar 

  2. U. M. Ascher, R. M. Mattheij, and R. D. Russel, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, SIAM, Philadelphia (1995).

    Book  Google Scholar 

  3. K. I. Babenko, Fundamentals of Numerical Analysis [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  4. N. S. Bakhvalov, Numerical Methods: Analysis, Algebra, Ordinary Differential Equations [in Russian], Mir, Moscow (1977).

    Google Scholar 

  5. R. Bellman and R. Kalaba, Quasilinearization and Nonlinear Boundary Value Problems, American Elsevier, New York (1965).

    MATH  Google Scholar 

  6. A. A. Boichuk and A. M. Samoilenko, Generalized Inverse Operators and Fredholm Boundary-Value Problems, De Gruyter, Berlin (2016).

    Book  Google Scholar 

  7. L. Brugnano and D. Trigiante, Solving Differential Problems by Multistep Initial and Boundary Value Methods, Gordon & Breach, Amsterdam (1998).

    MATH  Google Scholar 

  8. J. C. Butcher, The Numerical Analysis of Ordinary Differential Equations, Wiley, New York (1987).

    MATH  Google Scholar 

  9. P. Deuflhard, Newton Methods for Nonlinear Problems, Springer, Berlin (2004).

    MATH  Google Scholar 

  10. D. S. Dzhumabayev, “Criteria for the unique solvability of a linear boundary-value problem for an ordinary differential equation,” USSR Comput. Math. Math. Phys., 29, No. 1, 34–46 (1989).

    Article  Google Scholar 

  11. D. S. Dzhumabaev, “New general solutions to linear Fredholm integrodifferential equations and their applications on solving the boundary value problems,” J. Comput. Appl. Math., 327, 79–108 (2018).

    Article  MathSciNet  Google Scholar 

  12. D. S. Dzhumabaev, “Computational methods of solving the boundary value problems for the loaded differential and Fredholm integrodifferential equations,” Math. Methods Appl. Sci., 41, 1439–1462 (2018).

    Article  MathSciNet  Google Scholar 

  13. D. S. Dzhumabaev, “Well-posedness of nonlocal boundary-value problem for a system of loaded hyperbolic equations and an algorithm for finding its solution,” J. Math. Anal. Appl., 461, 817–836 (2018).

    Article  MathSciNet  Google Scholar 

  14. D. S. Dzhumabaev and S. M. Temesheva, “A parametrization method for solving nonlinear two-point boundary value problems,” Comput. Math. Math. Phys., 47, No. 1, 37–61 (2007).

    Article  MathSciNet  Google Scholar 

  15. D. S. Dzhumabaev and S. M. Temesheva, “Criteria for the existence of an isolated solution of a nonlinear boundary-value problem,” Ukr. Mat. Zh., 70, No. 3, 356–365 (2018); English translation: Ukr. Math. J., 70, No. 3, 410–421 (2018).

    Article  Google Scholar 

  16. D. S. Dzhumabaev, “On one approach to solve the linear boundary value problems for Fredholm integrodifferential equations,” J. Comput. Appl. Math., 294, 342–357 (2016).

    Article  MathSciNet  Google Scholar 

  17. D. S. Dzhumabaev, “Necessary and sufficient conditions for the solvability of linear boundary-value problems for the Fredholm integrodifferential equations,” Ukr. Mat. Zh., 66, No. 8, 1074–1091 (2014); English translation: Ukr. Math. J., 66, No. 8, 1200–1219 (2015).

    MathSciNet  Google Scholar 

  18. D. S. Dzhumabaev, “Solvability of a linear boundary-value problem for a Fredholm integro-differential equation with impulsive inputs,” Different. Equat., 51, 1180–1196 (2015).

    Article  MathSciNet  Google Scholar 

  19. H. B. Keller, Numerical Methods for Two-Point Boundary Value Problems, Dover, New York (1992).

    Google Scholar 

  20. C. T. Kelley, Solving Nonlinear Equations with Newton’s Method, SIAM, Philadelphia (2003).

    Book  Google Scholar 

  21. V. Lakshmikantham and A. S. Vatsala, Generalized Quasilinearization for Nonlinear Problems, Kluwer Academic Publishers, Dordrecht (1998).

    Book  Google Scholar 

  22. J. D. Lampert, Computational Methods in Ordinary Differential Equations, Wiley, New York (1973).

    Google Scholar 

  23. G. Hall and J. M. Watt (editors), Modern Numerical Methods for Ordinary Differential Equations, Clarendon, Oxford (1976).

    MATH  Google Scholar 

  24. S. K. Ntouyas, “Nonlocal initial and boundary value problems: a survey,” in: Handbook of Differential Equations: Ordinary Differential Equations, 2, Elsevier, Amsterdam (2005), pp. 461–557.

    Google Scholar 

  25. J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York (1970).

    MATH  Google Scholar 

  26. O. O. Pokutnyi, “Approximation of generalized bounded solutions of evolutionary equations with unbounded operator,” Nelin. Kolyv., 14, No. 1, 93–99 (2011); English translation: Nonlin. Oscillat., 14, No. 1, 95–101 (2011).

    MathSciNet  Google Scholar 

  27. S. M. Roberts and J. S. Shipman, Two-Point Boundary-Value Problems: Shooting Methods, Elsevier, New York (1972).

    MATH  Google Scholar 

  28. M. Ronto and A. M. Samoilenko, Numerical-Analytic Methods in the Theory of Boundary-Value Problems, World Scientific, River Edge (2000).

    Book  Google Scholar 

  29. A. Ronto and M. Ronto, “Successive approximation techniques in nonlinear boundary-value problems for ordinary differential equations,” in: Handbook of Differential Equations: Ordinary Differential Equations, 4, Elsevier, Amsterdam (2008), pp. 441–592.

    MATH  Google Scholar 

  30. L. F. Shampine, Numerical Solution of Ordinary Differential Equations, Chapman & Hall, New York (1994).

    MATH  Google Scholar 

  31. J. Stoer and D. Bulirsch, Introduction to Numerical Analysis, Springer, New York (2002).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Dzhumabaev.

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 71, No. 7, pp. 884–905, July, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzhumabaev, D.S. New General Solutions of Ordinary Differential Equations and The Methods for The Solution of Boundary-Value Problems. Ukr Math J 71, 1006–1031 (2019). https://doi.org/10.1007/s11253-019-01694-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-019-01694-9

Navigation