Skip to main content
Log in

Lyapunov Functions in the Global Analysis of Chaotic Systems

  • Published:
Ukrainian Mathematical Journal Aims and scope

We present an overview of the development of the direct Lyapunov method in the global analysis of chaotic systems and describe three directions of application of the Lyapunov functions: in the methods of localization of global attractors, where the estimates of dissipativity in Levinson’s sense are obtained, in the problems of existence of homoclinic trajectories, and in the estimation of the dimensions of attractors. The efficiency of construction of Lyapunov-type functions is demonstrated. In particular, the Lyapunov dimension formula is proved for the attractors of the Lorentz system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Lyapunov, General Problem of Stability of Motion. Collection of Works [in Russian], Gostekhizdat, Moscow (1950); English translation: A. M. Lyapunov, General Problem of Stability of Motion, CRC Press (1992).

  2. J. La Salle and S. Lefschetz, Stability by Lyapunov’s Direct Method with Applications, Academic Press, New York (1961).

    MATH  Google Scholar 

  3. W. Hahn, Theorie und Anwendungen der Direkten Methodes von Lyapunov, Springer, Berlin (1959).

    Book  Google Scholar 

  4. I. G. Malkin, Theory of Stability of Motion [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  5. N. G. Chetaev, Stability of Motion [in Russian], Gostekhizdat, Moscow (1956).

    Google Scholar 

  6. N. N. Krasovskii, Some Problems of the Theory of Stability of Motion [in Russian], Fizmatgiz, Moscow (1959).

    Google Scholar 

  7. E. A. Barbashin, Lyapunov Functions [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  8. T. Yoshizawa, “Lyapunov’s function and boundedness of solutions,” Funkc. Ekvacioj., 2, 95–142 (1959).

    MATH  Google Scholar 

  9. N. Rouche, P. Habets, and M. Laloy, Stability Theory by Lyapunov’s Direct Method, Springer, New York (1977).

    Book  MATH  Google Scholar 

  10. L. Cesari, Asymptotic Behavior and Stability Problems in Ordinary Differential Equations, Springer, Berlin (1959).

    Book  MATH  Google Scholar 

  11. S. Lefschetz, Stability of Nonlinear Control Systems, Academic Press, New York (1965).

    MATH  Google Scholar 

  12. V. M. Kuntsevich and M. M. Lychak, Synthesis of Automatic Control Systems with the Use of Lyapunov Functions [in Russian], Nauka, Kiev (1977).

    MATH  Google Scholar 

  13. V. V. Rumyantsev, “Method of Lyapunov functions in the theory of stability of motion,” in: Mechanics in the USSR for 50 Years [in Russian], 1 (1968), pp. 7–66.

  14. G. A. Leonov, D. V. Ponomarenko, and V. B. Smirnova, Frequency-Domain Methods for Nonlinear Analysis: Theory and Applications, World Scientific Publishing, Singapore (1996).

    Book  MATH  Google Scholar 

  15. E. Lorenz, “Deterministic nonperiodic flow,” J. Atmospheric Sci., 20, 130–141 (1963).

    Article  MATH  Google Scholar 

  16. J. Lu and G. Chen, “A new chaotic attractor coined,” Intern. J. Bifurcat. Chaos, 12, No. 3, 652–661 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Chen and X. Dong, From Chaos to Order: Methodologies, Perspectives and Applications, World Scientific Publishing, Singapore (1998).

    Book  MATH  Google Scholar 

  18. G. A. Leonov, A. I. Bunin, and N. Koksch, “Attractorlocalisierung des Lorenz system,” Z. Angew. Math. Mech., 67, No. 12, 649–656 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Tigan and D. Opris, “Analysis of a 3D chaotic system,” Chaos, Solutions Fractals, 36, No. 5, 1315–1319 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Tigan and D. Constyantinessu, “Heteroclinic orbits in T and Lu systems,” Chaos, Solutions Fractals, 42, No. 7 (2014).

  21. Q. Yang and G. Chen, “A chaotic system with one saddle and two stable node-foci,” Intern. J. Bifurcat. Chaos, 18, 1393–1414 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  22. T. Shimizu and N. Morioka, “On the bifurcation of a symmetric limit cycle to an asymmetric one,” Phys. Lett. A, 76, No. 3–4, 201–204 (1980).

    Article  MathSciNet  Google Scholar 

  23. G. A. Leonov, “Fishing principle for homoclinic and heteroclinic trajectories,” Nonlinear Dynam., 78, 2751–2758 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  24. F. Zhang, X. Liao, C. Mu, G. Zhang, and Y. A. Chen, “On global boundedness of the Chen system,” Discrete Contin. Dynam. Syst., Ser. B, 22, No. 4, 1673–1681 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  25. G. A. Leonov, B. R. Andrievskii, and R. N. Mokaev, “Asymptotic behavior of solutions of Lorenz-type systems. Analytic results and structures of computer errors,” Vestn. St.-Petersburg. Univ., Ser. 1, Mat. Mekh. Astronom., 4, No. 1, 25–37 (2017).

    Google Scholar 

  26. G. A. Leonov, “General existence conditions of homoclinic trajectories in dissipative systems. Lorenz, Shimizu–Morioka, Lu, and Chen systems,” Phys. Lett. A, 376, No. 45, 3045–3050 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  27. G. A. Leonov, “Tricomi problem for the dynamical Shimizu–Morioka system,” Dokl. Ros. Akad. Nauk. Mat., 447, No. 6, 603–606 (2012).

    MathSciNet  MATH  Google Scholar 

  28. G. A. Leonov, “Criteria for the existence of homoclinic trajectories in Lu and Chen systems,” Dokl. Ros. Akad. Nauk. Mat., 449, No. 6, 634–638 (2013).

    Google Scholar 

  29. G. A. Leonov, “Rössler systems. Estimation of the dimension of attractors and homoclinic trajectories,” Dokl. Ros. Akad. Nauk. Mat., 456, No. 6, 442–444 (2014).

    Google Scholar 

  30. G. A. Leonov, “Bounds for attractors and the existence of homoclinic orbits in the Lorenz system,” J. Appl. Math. Mech., 65, No. 1, 19–32 (2001).

    Article  MathSciNet  Google Scholar 

  31. G. A. Leonov, “Tricomi problem of the existence of homoclinic trajectories in dissipative systems,” Prikl. Mat. Mekh., 77, Issue 3, 410–420 (2013).

  32. G. A. Leonov, “Cascade of bifurcations in Lorenz-like systems: birth of strange attractor, blue sky catastrophe bifurcation and nine homoclinic bifurcations,” Dokl. Math., 92, No. 2, 563–567 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  33. G. A. Leonov, “Necessary and sufficient conditions of the existence of homoclinic trajectories and cascade of bifurcations in Lorenzlike systems: birth of strange attractor and 9 homoclinic bifurcations,” Nonlin. Dynam., 84, No. 2, 1055–1062 (2016).

    Article  MATH  Google Scholar 

  34. I. I. Ovsyannikov and D. V. Turaev, “Analytic proof of the existence of the Lorenz attractor in the extended Lorenz model,” Nonlinearity, 30, 135–137 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  35. G. A. Leonov and R. N. Mokaev, “Homoclinic bifurcations of the merging strange attractors in the Lorenz-like system,” Intern. J. Bifurcat. Chaos (2018).

  36. O. A. Ladyzhenskaya, “On the dynamical system generated by the Navier–Stokes equations,” Zap. Nauch. Sem. LOMI, 27, 91–114 (1972).

    MathSciNet  Google Scholar 

  37. Yu. S. Il’yashenko, “Weakly contracting systems and attractors of the Galerkin approximations of the Navier–Stokes equations,” Usp. Mat. Nauk, 36, Issue 3, 243–244 (1981).

  38. O. A. Ladyzhenskaya, “On the determination of minimum global attractors for the Navier–Stokes equations and other partial differential equations,” Usp. Mat. Nauk, 42, Issue 6, 25–60 (1987).

  39. A. Douady and J. Oesterle, “Dimension de Hausdorff des attractors,” C. R. Acad. Sci. Paris, Ser. A, 290, No. 24, 1135–1138 (1980).

    MathSciNet  MATH  Google Scholar 

  40. F. R. Gantmacher, The Theory of Matrices, American Mathematical Society Chelsea Publ., New York (1959).

    MATH  Google Scholar 

  41. V. A. Boichenko, G. A. Leonov, and V. Reitmann, Dimension Theory for Ordinary Differential Equations, Teubner, Wiesbaden (2005).

    Book  MATH  Google Scholar 

  42. V. A. Boichenko and G. A. Leonov, “Lyapunov functions, Lozinskii norms, and Hausdorff measure in the qualitative theory of differential equations,” Amer. Math. Soc. Transl., Ser. 2, 193, 1–26 (1999).

    MathSciNet  MATH  Google Scholar 

  43. G. A. Leonov, “Hausdorff–Lebesgue dimension of attractors,” Internat. J. Bifurcat. Chaos, 27, No. 10 (2017).

  44. J. Kaplan and J. Yorke, “Chaotic behavior of multidimensional difference equations,” in: H. Peitgen and H. Walter (editors), Functional Differential Equations and Approximation of Fixed Points, Springer, Berlin (1979), pp. 204–227.

    Chapter  Google Scholar 

  45. A. Eden, C. Foias, and R. Temam, “Local and global Lyapunov exponents,” J. Dynam. Different. Equat., 3, No. 1, 133–177 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  46. G. A. Leonov, “Lyapunov dimension formulas for Henon and Lorenz attractors,” St. Petersburg Math. J., 13, 453–464 (2002).

    MathSciNet  MATH  Google Scholar 

  47. G. A. Leonov, “Lyapunov functions in the attractors dimension theory,” Appl. Math. Mech., 76, 129–141 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  48. A. Eden, “Local estimates for the Hausdorff dimension of an attractor,” J. Math. Anal. Appl., 150, No. 1, 100–119 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  49. C. Doering and J. Gibbon, “On the shape and dimension of the Lorenz attractor,” Dyn. Stability Syst., 10, No. 3, 255–268 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  50. G. A. Leonov, Strange Attractors and Classical Stability Theory, St. Petersburg University Press, St. Petersburg (2008).

    MATH  Google Scholar 

  51. G. A. Leonov, “Formulas for the Lyapunov dimension of attractors of the generalized Lorenz system,” Dokl. Math., 450, No. 1, 13–18 (2013).

    MathSciNet  Google Scholar 

  52. G. A. Leonov, N. V. Kuznetsov, N. A. Korzhemanova, and D. V. Kusakin, “Lyapunov dimension formula for the global attractor of the Lorenz system,” Comm. Nonlin. Sci. Numer. Simul., 41, 84–103 (2016).

    Article  MathSciNet  Google Scholar 

  53. G. A. Leonov, A. Yu. Pogromsky, and D. V. Starkov, “Dimension formula for the Lorenz attractor,” Phys. Lett. A, 375, No. 8, 1179–1182 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  54. G. A. Leonov, “Lyapunov dimension formulas for Lorenz-like systems,” Internat. J. Bifurcat. Chaos, 26 (2016).

  55. G. A. Leonov and M. S. Poltinnikova, “On the Lyapunov dimension of an attractor of the Chirikov dissipative mapping,” Tr. Sankt-Petersburg. Mat. Obshch., 10, 186–198 (2002).

    Google Scholar 

  56. G. A. Leonov and T. A. Alekseeva, “Estimation of the Lyapunov dimension of attractors in the generalized Rössler systems,” Vestn. Sankt-Petersburg. Univ., Ser. 1, Mat. Mekh. Astronom., 1(59), Issue 4, 544–550 (2014).

  57. G. A. Leonov and T. N. Mokaev, “Lyapunov dimension formula for the attractor of the Glukhovsky–Dolzhansky system,” Dokl. Math., 93, No. 1, 42–45 (2016).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 70, No. 1, pp. 40–62, January, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonov, G.A. Lyapunov Functions in the Global Analysis of Chaotic Systems. Ukr Math J 70, 42–66 (2018). https://doi.org/10.1007/s11253-018-1487-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-018-1487-y

Navigation