Skip to main content
Log in

Globally Robust Stability Analysis for Stochastic Cohen–Grossberg Neural Networks with Impulse Control and Time-Varying Delays

  • Published:
Ukrainian Mathematical Journal Aims and scope

By constructing suitable Lyapunov functionals, in combination with the matrix-inequality technique, we establish a new simple sufficient linear matrix-inequality condition for the global robustly asymptotic stability of the stochastic Cohen–Grossberg neural networks with impulsive control and time-varying delays. This condition contains and improves some previous results from the earlier references.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Guo and L. Huang, “Stability analysis of a delayed Hopfield neural network,” Phys. Rev. E (3), 67, 1–7 (2003).

  2. P. P. Civalleri, M. Gilli, and L. Pandolfi, “On stability of cellular neural networks with delay,” IEEE Trans. Circuits Syst. I. Regul. Pap., 40, 157–165 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Roska and L. O. Chua, “Cellular neural networks with delay-type template elements on nonuniform grid,” Int. J. Circ. Theor. Appl., 20, 469–481 (1992).

    Article  MATH  Google Scholar 

  4. Y. Li, “Global exponential stability of BAM neural networks with delays and impulses,” Chaos Solitons Fractals, 24, 279–285 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  5. M. A. Cohen and S. Grossberg, “Absolute stability of global parallel memory storage by competitive neural networks,” IEEE Trans. Syst. Man, Cybernet., 13, 815–826 (1983).

  6. Y. Guo, “Global asymptotic stability analysis for integro-differential systems modeling neural networks with delays,” Z. Angew. Math. Phys., 61, 971–978 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  7. Y. Guo and S. T. Liu, “Global exponential stability analysis for a class of neural networks with time delays,” Internat. J. Robust Nonlin. Control, 22, 1484–1494 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Haykin, Neural Networks, Prentice-Hall NJ, (1994).

  9. A. Friedman, Stochastic Differential Equations and Their Applications, Academic Press, New York (1976).

    MATH  Google Scholar 

  10. Y. Guo, “Mean square global asymptotic stability of stochastic recurrent neural networks with distributed delays,” Appl. Math. Comput., 215, 791–795 (2009).

    MathSciNet  MATH  Google Scholar 

  11. J. Yang, S. Zhong, and W. Luo, “Mean square stability analysis of impulsive stochastic differential equations with delays,” J. Comput. Appl. Math., 216, 474–483 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  12. Y. Guo, “Global stability analysis for a class of Cohen–Grossberg neural network models,” Bull. Korean Math. Soc., 49, No. 6, 1193–1198 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  13. Z. Wang, Y. Liu, M. Li, and X. Liu, “Stability analysis for stochastic Cohen–Grossberg neural networks with mixed time delays,” IEEE Trans. Neural Netw. Learn. Syst., 17, No. 3, 814–820 (2006).

    Article  Google Scholar 

  14. S. Blythe, X. Mao, and X. Liao, “Stability of stochastic delay neural networks,” J. Franklin Inst., 338, 481–495 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  15. Y. Guo, “Mean square exponential stability of stochastic delay cellular neural networks,” Electron. J. Qual. Theory Differ. Equ., 34, 1–10 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  16. Z. Yang, D. Xu, and L. Xiang, “Exponential p-stability of impulsive stochastic differential equations with delays,” Phys. Lett. A, 359, 129–137 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Wan and J. Sun, “Mean square exponential stability of stochastic delayed Hopfield neural networks,” Phys. Lett. A, 343, No. 4, 306–318 (2005).

    Article  MATH  Google Scholar 

  18. A. M. Samoilenko and M. O. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore (1995).

    Book  MATH  Google Scholar 

  19. Q. Wang and X. Liu, “Impulsive stabilization of delay differential systems via the Lyapunov–Razumikhin method,” Appl. Math. Lett., 20, 839–845 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  20. Z. Luo and J. Shen, “Impulsive stabilization of functional differential equations with infinite delays,” Appl. Math. Lett., 61, 695–701 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Samoilenko and O. Stanzhytskyi, Qualitative and Asymptotic Analysis of Differential Equations with Random Perturbations, World Scientific, Singapore (2011).

    Book  MATH  Google Scholar 

  22. M. A. Arbib, Branins, Machines, and Mathematics, Springer-Verlag, New York (1987).

    Book  Google Scholar 

  23. S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice-Hall, Englewood Cliffs, NJ (1998).

    MATH  Google Scholar 

  24. P. Wang, B. Li, and Y. Li, “Square-mean almost periodic solutions for impulsive stochastic shunting inhibitory cellular neural networks with delays,” Neurocomputing, 167, No. 1, 76–82 (2015).

  25. P. Cheng and F. Deng, “Global exponential stability of impulsive stochastic functional differential systems,” Statist. Probab. Lett., 80, 1854–1862 (2010).

  26. F. Yao, J. Cao, P. Cheng, et al., “Generalized average dwell time approach to the stability and input-to-state stability of hybrid impulsive stochastic differential systems,” Nonlin. Anal. Hybrid Syst., 22, 147–160 (2016).

  27. J. P. LaSalle, The Stability of Dynamical System, SIAM, Philadelphia (1976).

    Book  MATH  Google Scholar 

  28. S. Blythe, EI L. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA (1994).

  29. I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer, New York (1991).

    MATH  Google Scholar 

  30. L. Xu and D. Xu, “Mean square exponential stability of impulsive control stochastic systems with time-varying delay,” Phys. Lett. A, 373, No. 3, 328–333 (2009).

    Article  MATH  Google Scholar 

  31. V. Lakshmikantham, D. D. Bainov, and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific Publ., Teaneck, NJ, Vol. 6 (1989).

  32. B. Oksendal, Stochastic Differential Equations, 5th edn., Springer, Berlin (2002).

  33. X. Mao, “Razumikhin-type theorems on the exponential stability of stochastic functional differential equations,” Stochast. Process. Appl., 65, 233–250 (1996).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 69, No. 8, pp. 1049–1060, August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y. Globally Robust Stability Analysis for Stochastic Cohen–Grossberg Neural Networks with Impulse Control and Time-Varying Delays. Ukr Math J 69, 1220–1233 (2018). https://doi.org/10.1007/s11253-017-1426-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-017-1426-3

Navigation