Skip to main content

Advertisement

Log in

Vegetation changes at sub-xeric urban forest edges in Finland – the effects of edge aspect and trampling

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

The relative strengths of the effects of forest edges and recreational use on understorey vegetation were studied at sub-xeric boreal urban forest edges in the greater Helsinki region, Finland. The study was performed at northern, eastern, southern and western edges, and vegetation sample plots were placed on, next to and away from paths with different trampling intensities 0–107 m from the forest edges. We found that human trampling altered vegetation more than the effects of forest edges. Vegetation changed dramatically on paths and the effects of path edges were seen in seemingly untrampled vegetation at least up to 4 m from the path edge. However, our results suggested that the effect of the edge may penetrate up to 50 m into forest interiors. Changes in vegetation composition indicated that the effects of the edge were stronger at eastern, southern and western than at northern edges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahti T (1989) Jäkälien määritysopas [Lichen identification guide]. Helsingin yliopiston kasvitieteen laitoksen monisteita 118, 2nd edn. University of Helsinki, Helsinki [in Finnish]

  • Ahti T, Hämet-Ahti L, Jalas J (1968) Vegetation zones and their sections in northwestern Europe. Ann Bot Fenn 5:169–211

    Google Scholar 

  • Angold PG (1997) The impact of a road upon adjacent heathland vegetation: effects on plant species composition. J Appl Ecol 34:409–417

    Article  Google Scholar 

  • Bannerman S (1998) Biodiversity and interior habitats: the need to minimize edge effects. B.C. Ministry of forests research program, Victoria, B.C. Ext Note 21:1–8

    Google Scholar 

  • Benninger-Truax M, Vankat JL, Schaefer RL (1992) Trail corridors as habitat and conduits for movement of plant species in Rocky Mountain National Park, Colorado, USA. Landsc Ecol 6:269–278

    Article  Google Scholar 

  • Brothers TS, Spingarn A (1992) Forest fragmentation and alien plant invasion of central Indiana old-growth forests. Conserv Biol 6:91–100

    Article  Google Scholar 

  • Cajander AK (1926) The theory of forest types. Acta For Fenn 29:1–108

    Google Scholar 

  • Chen J, Franklin JF, Spies TA (1993) Contrasting microclimates among clearcut, edge, and interior of old-growth Douglas-fir forest. Agric For Meteorol 63:219–237

    Article  Google Scholar 

  • Chen J, Franklin JF, Spies TA (1995) Growing-season microclimatic gradients from clearcut edges into old-growth Douglas-fir forests. Ecol Appl 5:74–86

    Article  Google Scholar 

  • Didham RK, Lawton JH (1999) Edge structure determines the magnitude of changes in microclimate and vegetation structure in tropical forest fragments. Biotropica 31:17–30

    Google Scholar 

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142

    Article  PubMed  Google Scholar 

  • Fraver S (1994) Vegetation responses along edge-to-interior gradients in the mixed hardwood forests of the Roanoke River basin, North Carolina. Conserv Biol 8:822–832

    Article  Google Scholar 

  • Gehlhausen SM, Schwartz MW, Augspurger CK (2000) Vegetation and microclimatic edge effects in two mixed-mesophytic forest fragments. Plant Ecol 147:21–35

    Article  Google Scholar 

  • Godefroid S, Koedam N (2003) How important are large vs. small forest remnants for the conservation of the woodland flora in an urban context? Glob Ecol Biogeogr 12:287–298

    Article  Google Scholar 

  • Godefroid S, Koedam N (2004) The impact of forest paths upon adjacent vegetation: effects of the path surfacing material on the species composition and soil compaction. Biol Conserv 119:405–419

    Article  Google Scholar 

  • Hamberg L, Lehvävirta S, Malmivaara-Lämsä M et al (2008) The effects of habitat edges and trampling on understorey vegetation in urban forests in Helsinki, Finland. Appl Veg Sci 11:83–98

    Article  Google Scholar 

  • Harper KA, Macdonald SE, Burton PJ et al (2005) Edge influence on forest structure and composition in fragmented landscapes. Conserv Biol 19:768–782

    Article  Google Scholar 

  • Honnay O, Verheyen K, Hermy M (2002) Permeability of ancient forest edges for weedy plant species invasion. For Ecol Manag 161:109–122

    Article  Google Scholar 

  • Huggard DJ, Vyse A (2002) Edge effects in high-elevation forests at Sicamous Creek. B. C. Ministry of Forests, Forest Science Program, Victoria, B.C. Ext Note 62:1–8

    Google Scholar 

  • Hylander K (2005) Aspect modifies the magnitude of edge effects on bryophyte growth in boreal forests. J Appl Ecol 42:518–525

    Article  Google Scholar 

  • Hyvämäki T (ed.) (2002) Tapion taskukirja [The hand book of Tapio]. Kustannusosakeyhtiö Metsälehti, Helsinki [In Finnish]

  • Hämet-Ahti L, Suominen J, Ulvinen T et al. (eds.) (1998) Field Flora of Finland, 4th edn. Finnish Museum of Natural History, Helsinki [in Finnish]

  • Ingelög T, Olsson MT, Bödvarsson H (1977) Effecter av långvarigt tramp och foronskörning på mark, vegetation och vissa markdjur i ett äldre tallbestånd [with English summary: effects of long-term trampling and vehicle-driving on soil, vegetation and certain soil animals of an old Scots pine stand]. Skogshögskolan, Institutionen för växtekologi och marklära, Stockholm. Rapporter och uppsatser 27:1–84

    Google Scholar 

  • Jakobsson R, Nilsson M (2005) Effect of border zones on volume production in Scots pine stands. In: Jakobsson R Growth of retained Scots pines and their influence on the new stand. Doctoral thesis no. 34. Faculty of Forest Sciences, Swedish University of Agricultural Sciences, Department of Silviculture, 12 p

  • Kivistö L, Kuusinen M (2000) Edge effects on the epiphytic lichen flora of Picea abies in middle boreal Finland. Lichenol 32:387–398

    Article  Google Scholar 

  • Koponen T (1994) Lehtisammalten määritysopas [Moss identification guide], 3rd edn. Helsingin yliopiston kasvitieteen laitoksen monisteita 139, Helsinki [In Finnish]

  • Kuusipalo J (1996) Suomen metsätyypit [Forest site types of Finland]. Kirjayhtymä, Rauma

    Google Scholar 

  • Lehvävirta S (1999) Structural elements as barriers against wear in urban woodlands. Urban Ecosyst 3:45–56

    Article  Google Scholar 

  • Liddle M (1997) Recreation ecology. Chapman & Hall, London

    Google Scholar 

  • Malmivaara M, Löfström I, Vanha-Majamaa I (2002) Anthropogenic effects on understorey vegetation in Myrtillus type urban forests in southern Finland. Silva Fenn 36:367–381

    Google Scholar 

  • Malmivaara-Lämsä M, Hamberg L, Löfström I et al (2008a) Trampling tolerance of understorey vegetation in different hemiboreal urban forest site types in Finland. Urban Ecosyst 11:1–16

    Article  Google Scholar 

  • Malmivaara-Lämsä M, Hamberg L, Haapamäki E et al (2008b) Edge effects and trampling in boreal urban forest fragments — impacts on the soil microbial community. Soil Biol Biochem 40:1612–1621

    Article  Google Scholar 

  • Matlack GR (1993) Microenvironment variation within and among forest edge sites in the eastern United States. Biol Conserv 66:185–194

    Article  Google Scholar 

  • Matlack GR (1994) Vegetation dynamics of the forest edge — trends in space and successional time. J Ecol 82:113–123

    Article  Google Scholar 

  • Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10:58–62

    Article  Google Scholar 

  • Oksanen J (2004) Vegan: community ecology package. R package version 1.6-5. http://cc.oulu.fi/~jarioksa/

  • Palik BJ, Murphy PG (1990) Disturbance versus edge effects in sugar-maple/beech forest fragments. For Ecol Manag 32:187–202

    Article  Google Scholar 

  • Ranney JW, Bruner MC, Levenson JB (1981) The importance of edge in the structure and dynamics of forest Islands. In: Burgess RL, Sharpe DM (eds) Forest island dynamics in man-dominated landscapes. Springer Verlag, New York, pp 67–95

    Google Scholar 

  • R Development Core Team (2005) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org

  • Reinikainen A, Mäkipää R, Vanha-Majamaa I et al (eds) (2000) Kasvit muuttuvassa metsäluonnossa [with English summary: Changes in the frequency and abundance of forest and mire plants in Finland since 1950]. Tammi, Helsinki

    Google Scholar 

  • Roovers P, Baeten S, Hermy M (2004) Plant species variation across path ecotones in a variety of common vegetation types. Plant Ecol 170:107–119

    Article  Google Scholar 

  • Saetre P, Sturesson Saetre L, Brandtberg P-O et al (1997) Ground vegetation composition and heterogeneity in pure Norway spruce and mixed Norway spruce — birch stands. Can J For Res 27:2034–2042

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Google Scholar 

  • Wales BA (1972) Vegetation analysis of north and south edges in a mature oak-hickory forest. Ecol Monogr 42:451–471

    Article  Google Scholar 

  • Weathers KC, Cadenasso ML, Pickett STA (2001) Forest edges as nutrient and pollutant concentrators: potential synergisms between fragmentation, forest canopies, and the atmosphere. Conserv Biol 15:1506–1514

    Article  Google Scholar 

Download references

Acknowledgements

We thank Hannu Rita for his help in planning the sampling design, Minna Malminvaara-Lämsä for assisting in the field, Bob O’Hara for statistical advice and Sisko Salminen for her help in modifying the figures. The cities of Helsinki, Vantaa and Espoo, and The Finnish Forest Research Institute allowed us to work in their forests. The study was partly funded by the University of Helsinki, the city of Helsinki, the Maj and Tor Nessling Foundation, The Metsämiesten Säätiö Foundation and Helsinki University Centre for Environment (HENVI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leena Hamberg.

Appendices

Appendix A

Average covers and occurrences (=occ, i.e. the percentages of sample plots in which the plant species were found) of vascular plants, bryophytes and lichens at northern, eastern, southern and western sub-xeric urban forest edges. Values at northern edges represent distances up to 18 m from the forest edge

 

NORTH

 

EAST

 

SOUTH

 

WEST

 

n = 30

 

n = 74

 

n = 79

 

n = 73

 

cover %

occ

cover %

occ

cover %

occ

cover %

occ

Vascular plants

Abbreviation

eda

tr

        

Acer platanoides

Acer plat

I

I

0.01

7

0.00

0

0.00

0

0.00

0

Agrostis capillaris

Agro capi

T

T

0.27

3

0.00

0

<0.01

1

0.00

0

Anemone nemorosa

Anem nemo

T

I

0.00

0

0.07

3

0.00

0

0.00

0

Arctostaphylos uva-ursi

Arct uvau

T

I

0.60

3

0.00

0

0.00

0

4.03

12

Betula spp.

Betu spp

I

I

0.07

7

<0.01

1

0.00

0

0.04

4

Calamagrostis arundinacea

Cala arun

T

I

0.00

0

0.84

12

0.06

4

0.05

1

Calamagrostis epigejos

Cala epig

T

I

0.17

3

0.00

0

0.05

3

0.34

5

Calamagrostis spp.

Cala spp

0.00

0

0.01

1

0.00

0

0.00

0

Calluna vulgaris

Call vulg

T

I

1.81

17

1.31

23

4.28

19

2.61

19

Carex spp.

Care spp.

0.00

0

0.02

4

0.00

0

0.03

3

Convallaria majalis

Conv maja

T

T

0.00

0

0.93

5

0.46

8

0.53

10

Deschampsia flexuosa

Desc flex

T

I

0.03

3

9.61

57

0.87

11

0.85

18

Epilobium angustifolium

Epil angu

T

I

0.13

7

0.00

0

0.00

0

0.00

0

Festuca ovina

Fest ovin

T

T

1.43

3

0.03

1

0.43

4

0.00

0

Goodyera repens

Good repe

S

S

0.02

3

0.00

0

0.00

0

0.00

0

Hieracium vulgata coll.

Hier vulg

0.20

3

0.00

0

0.00

0

0.00

0

Linnea borealis

Linn bore

S

S

0.00

0

0.01

1

0.57

6

0.04

7

Luzula pilosa

Luzu pilo

T

I

0.21

20

0.38

19

0.15

6

0.41

8

Lycopodium spp.

Lyco spp.

0.00

0

<0.01

1

0.00

0

0.00

0

Maianthemum bifolium

Maia bifo

S

I

0.00

0

0.25

9

0.04

4

0.07

4

Melampyrum pratense

Mela prat

T

I

3.87

43

1.00

18

2.16

37

0.89

23

Melampyrum sylvaticum

Mela sylv

T

I

0.17

3

0.23

7

0.44

5

0.86

5

Melampyrum spp.

Mela spp.

T

I

2.83

20

<0.01

1

0.04

3

0.02

3

Picea abies

Pice abie

I

S

0.00

0

0.00

0

0.18

3

0.00

0

Pinus sylvestris

Pinu sylv

T

S

0.07

13

0.02

12

0.12

24

0.03

16

Poa spp.

Poa spp.

T

T

0.01

7

<0.01

1

0.15

8

0.03

1

Populus tremula

Popu trem

T

I

0.00

0

0.04

1

0.18

5

0.00

0

Pteridium aquilinum

Pter aqui

T

I

0.00

0

0.00

0

0.47

3

0.41

3

Rumex spp.

Rume spp.

T

T

0.00

0

0.00

0

0.00

0

0.02

3

Seedlings

Seedl.

0.02

17

0.01

4

0.01

6

<0.01

1

Solidago virgaurea

Soli virg

T

S

0.00

0

0.04

3

0.00

0

0.00

0

Sorbus aucuparia

Sorb aucu

I

I

0.30

40

0.25

31

0.08

14

0.06

16

Trientalis europaea

Trie euro

S

I

0.17

3

0.02

4

0.22

9

0.27

11

Vaccinium myrtillus

Vacc myrt

S

S

25.62

73

20.59

66

18.42

56

14.87

48

Vaccinium vitis-idaea

Vacc viti

S

S

7.07

63

15.11

87

12.27

82

15.25

92

Viola spp.

Viola spp.

0.00

0

0.03

1

0.00

0

0.00

0

Bryophytes and lichens

Aulacomnium palustre

Aula palu

I

I

0.00

0

0.24

9

0.00

0

0.00

0

Brachythecium spp.

Brac spp.

T

S

1.16

20

1.60

28

0.39

11

0.27

10

Ceratodon purpureus

Cera purp

T

T

0.00

0

0.00

0

0.66

3

0.00

0

Certraria islandica

Cetr isla

T

T

0.05

13

0.12

3

0.03

3

0.01

5

Cladina rangiferina

Cladina rang

T

S

0.00

0

0.00

0

0.00

0

0.04

4

Cladina spp.

Cladina spp.

0.00

0

0.00

0

0.03

3

0.00

0

Cladonia spp.

Clad spp.

I

S

0.05

7

0.09

14

0.08

11

0.09

21

Dicranella spp.

Dicra spp.

0.00

0

0.00

0

0.00

0

0.03

1

Dicranum majus

Dicr maju

S

S

0.00

0

<0.01

1

0.00

0

0.00

0

Dicranum polysetum

Dicr poly

S

S

12.17

83

10.93

80

12.91

76

23.40

95

Dicranum scoparium

Dicr scop

S

I

1.14

13

0.51

41

0.73

43

1.38

38

Dicranum spurium

Dicr spur

0.00

0

0.00

0

0.03

1

0.00

0

Hepaticae

Hepa

0.00

0

0.06

7

0.02

3

0.01

1

Hylocomium splendens

Hylo sple

S

S

2.77

23

2.07

22

0.71

14

1.89

16

Plagiothecium spp.

Plag spp.

I

0.00

0

<0.01

4

<0.01

1

0.01

1

Pleurozium schreberi

Pleu schr

S

S

21.02

93

13.25

84

11.52

65

11.91

88

Pohlia nutans

Pohl nuta

T

T

0.27

17

0.27

14

0.15

15

0.12

21

Polytrichum commune

Poly comm

T

I

0.00

0

0.16

5

0.00

0

0.84

5

Polytrichum juniperinum

Poly juni

T

T

<0.01

3

<0.01

3

0.01

1

0.00

0

Ptilidium ciliare

Ptil cili

0.00

0

0.06

3

0.00

0

0.05

4

Ptilium crista-castrensis

Ptil cris

S

S

0.00

0

0.00

0

0.03

1

0.00

0

Rhytidiadelphus squarrosus

Rhyt squa

T

T

0.00

0

0.43

5

0.00

0

0.00

0

Sanionia uncinata

Sani unci

0.34

13

<0.01

1

0.00

0

0.00

0

Sphagnum spp.

Spha spp.

0.00

0

0.07

4

1.16

3

0.32

4

  1. aPredicted responses to the edge (ed); T = edge favouring, I = indifferent to the edge, S = edge sensitive. Trampling responses (tr.); T = moderate to high trampling tolerance, I = low trampling tolerance, S = very low trampling tolerance

Appendix B

Generalized linear mixed model results for the plant species or species groups investigated (see Table 2). Sample plots on, next to and away from the paths are included in the models. Coefficients and p-values of the variables investigated are presented. One-tailed p-values are given for variables, because predictions from the literature were obtained for plant species responses to trampling and edge effects before the analyses were performed. However, for tree volume (m3 ha−1) and conifer percentage (%) two-tailed p-values are given. Statistically significant p-values are indicated in boldface

 

Model

Intercepta

tree volumeb

conifer%c

pathdistd

wearclass Le

wearclass Q

Coeff.

p

Coeff.

p

Coeff.

p

Coeff.

p

Coeff.

p

Coeff.

p

Vaccinium myrtillus

cover

−1.148

0.046

−0.002

0.043

−0.003

0.447

0.422

<0.001

−0.295

0.137

−0.261

0.146

occur.

0.647

0.527

−0.004

0.017

0.003

0.760

0.250

0.023

−1.573

<0.001

−0.460

0.139

Pleurozium schreberi

cover

−2.182

<0.001

−0.001

0.353

<0.001

0.952

0.330

<0.001

−0.731

0.003

−0.251

0.153

occur.

2.808

0.081

−0.005

0.052

0.005

0.710

0.967

<0.001

−1.483

0.015

0.175

0.392

Dicranum polysetum

cover

−3.658

<0.001

−0.001

0.441

0.016

0.009

0.315

<0.001

−0.203

0.148

0.274

0.079

occur.

1.471

0.170

<0.001

0.981

0.016

0.138

1.816

<0.001

−1.790

<0.001

−1.321

0.005

Dicranum scoparium

cover

−6.833

<0.001

0.002

0.107

0.001

0.824

−0.350

0.005

0.218

0.251

0.111

0.364

occur.

−0.436

0.534

0.001

0.697

0.001

0.843

−0.322

0.004

0.628

0.038

−0.595

0.039

Vaccinium vitis-idaea

cover

−1.655

<0.001

<−0.001

0.845

−0.007

0.014

0.383

<0.001

−0.181

0.131

0.142

0.196

occur.

1.635

0.588

0.002

0.717

0.001

0.972

2.187

0.052

−1.533

0.154

0.031

0.491

Melampyrum species

cover

−4.077

<0.001

−0.002

0.111

−0.005

0.381

0.270

0.001

−1.227

0.001

−0.139

0.346

occur.

−0.674

0.451

0.002

0.381

−0.009

0.289

0.242

0.024

−1.455

<0.001

0.424

0.159

Grasses

cover

−1.911

<0.001

−0.002

0.204

−0.005

0.300

0.246

0.005

0.146

0.321

−0.435

0.073

occur.

1.229

0.229

−0.001

0.664

−0.010

0.217

0.092

0.249

−1.330

0.004

−0.648

0.091

Tolerant species

cover

−5.989

<0.001

−0.001

0.562

<−0.001

0.964

0.159

0.077

−0.631

0.110

−1.054

0.007

occur.

−0.411

0.704

<0.001

0.880

0.006

0.484

−0.236

0.035

0.271

0.241

−0.222

0.278

Edge favouring

cover

−4.891

<0.001

0.001

0.738

−0.016

0.038

−0.250

0.009

−0.849

0.039

1.144

0.030

species

occur.

0.596

0.430

−0.002

0.243

−0.016

0.019

−0.084

0.245

0.320

0.182

0.620

0.044

 

Model

wearclass C

aspect S f

aspect Wg

edgelin h

edgesq

edgecub

Coeff.

p

Coeff.

p

Coeff.

p

Coeff.

p

Coeff.

p

Coeff.

p

Vaccinium myrtillus

cover

−0.109

0.305

0.348

0.280

0.608

0.169

−0.034

0.046

−0.001

0.097

<0.001

0.021

occur.

−0.174

0.315

0.674

0.243

1.544

0.059

0.001

0.483

0.001

0.050

Pleurozium schreberi

cover

0.032

0.440

0.557

0.147

−0.326

0.255

−0.048

0.007

−0.001

0.025

<0.001

0.003

occur.

−0.420

0.220

−1.787

0.053

−0.410

0.400

−0.081

0.081

−0.002

0.018

<0.001

0.025

Dicranum polysetum

cover

−0.083

0.330

−0.285

0.264

0.299

0.234

0.016

0.154

<−0.001

0.244

<0.001

0.405

occur.

0.310

0.261

−2.079

0.032

3.062

0.113

0.034

0.194

−0.003

0.002

<0.001

0.076

Dicranum scoparium

cover

−0.656

0.014

1.324

0.116

1.101

0.159

−0.116

0.050

−0.001

0.275

<0.001

0.149

occur.

−0.272

0.189

0.328

0.244

0.087

0.428

−0.038

0.005

Vaccinium vitis-idaea

cover

0.345

0.015

−0.007

0.489

−0.079

0.375

−0.004

0.228

occur.

0.027

0.491

−0.608

0.353

−0.134

0.468

0.029

0.303

Melampyrum species

cover

−0.479

0.035

0.857

0.155

−0.783

0.196

0.063

0.020

<−0.001

0.417

<−0.001

0.053

occur.

−0.583

0.052

0.584

0.246

−0.083

0.461

0.076

0.014

−0.001

0.196

<−0.001

0.053

Grasses

cover

0.348

0.111

−2.205

0.027

−1.384

0.007

−0.030

0.080

<−0.001

0.266

<−0.001

0.243

occur.

0.331

0.186

0.085

0.470

−1.782

0.040

0.019

0.333

0.001

0.182

<−0.001

0.059

Tolerant species

cover

0.005

0.494

1.076

0.186

0.484

0.353

−0.153

0.039

−0.001

0.288

<0.001

0.181

occur.

−0.538

0.055

−1.139

0.137

−0.367

0.362

−0.050

0.171

−0.007

0.053

<−0.001

0.084

Edge favouring species

cover

0.774

0.103

0.382

0.352

−0.770

0.264

−0.029

0.039

occur.

0.088

0.403

0.171

0.406

−0.010

0.494

−0.008

0.277

0.001

0.010

 

Model

aspect S: edgelini

aspect W: edgelinj

aspect S: edgesq

aspect W: edgesq

aspect S: edgecub

aspect W: edgecub

Coeff.

p

Coeff.

p

Coeff.

p

Coeff.

p

Coeff.

p

Coeff.

p

Vaccinium myrtillus

cover

0.038

0.069

0.061

0.046

<−0.001

0.330

−0.002

0.014

<−0.001

0.171

<−0.001

0.093

occur.

0.031

0.065

0.006

0.401

−0.001

0.086

−0.004

<0.001

Pleurozium schreberi

cover

0.030

0.097

0.056

0.017

−0.001

0.136

<0.001

0.239

<0.001

0.411

<−0.001

0.039

occur.

0.077

0.139

0.198

0.302

0.002

0.080

0.013

0.318

<−0.001

0.141

<0.001

0.359

Dicranum polysetum

cover

0.017

0.196

0.016

0.220

0.001

0.131

<0.001

0.314

<−0.001

0.046

−0.001

0.409

occur.

−0.003

0.471

−0.113

0.158

0.003

0.002

<0.001

0.494

<−0.001

0.034

<0.001

0.290

Dicranum scoparium

cover

0.062

0.205

0.133

0.037

<0.001

0.427

0.001

0.091

<−0.001

0.385

<−0.001

0.056

occur.

0.016

0.173

0.032

0.041

Vaccinium vitis-idaea

cover

0.010

0.066

0.015

0.026

occur.

−0.020

0.382

−0.040

0.293

Melampyrum species

cover

−0.081

0.014

−0.085

0.029

<−0.001

0.243

0.001

0.120

<0.001

0.063

<0.001

0.115

occur.

−0.087

0.020

−0.105

0.015

0.001

0.200

0.001

0.252

<0.001

0.096

<0.001

0.069

Grasses

cover

−0.058

0.233

−0.013

0.376

−0.001

0.283

−0.001

0.172

<0.001

0.274

<0.001

0.060

occur.

0.003

0.484

−0.091

0.048

−0.003

0.035

−0.002

0.120

<0.001

0.433

<0.001

0.012

Tolerant species

cover

0.176

0.025

0.056

0.284

0.001

0.258

<0.001

0.437

<−0.001

0.074

<−0.001

0.478

occur.

0.074

0.109

0.015

0.400

0.007

0.049

0.007

0.057

<0.001

0.122

<0.001

0.082

Edge favouring species

cover

−0.007

0.395

0.019

0.220

occur.

−0.027

0.062

−0.005

0.391

<−0.001

0.265

−0.001

0.187

  1. aIntercept = eastern aspect
  2. btree volume = volume of trees (dbh ≥ 5 cm, m3 ha−1) on tree sample plot around the vegetation sample plot
  3. cconifer% = proportion of conifers around vegetation sample plot (%)
  4. dpathdist = distance from the path edge (m)
  5. ewearclass L = linear response, wearclass Q = squared response and wearclass C = cubic response for trampling intensity classes 1–4
  6. faspect S = the difference between the levels of eastern and southern aspect at 38 m from the forest edge (edgelin = edgesq = edgecub = 0)
  7. gaspect W = the difference between the levels of eastern and western aspect at 38 m from the forest edge (edgelin = edgesq = edgecub = 0)
  8. hedgelin = distance from the forest edge minus average distance from the forest edge (m), edgesq = edgelin2 and edgecub = edgelin3. Edgelin, edgesq and edgecub describe the effect of the edge for eastern aspect
  9. iaspect S:edgelin, aspect S:edgesq and aspect S:edgecub = the difference between eastern and southern edge response curves
  10. jaspect W:edgelin, aspect W:edgesq and aspect W:edgecub = the difference between eastern and western edge response curves

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamberg, L., Fedrowitz, K., Lehvävirta, S. et al. Vegetation changes at sub-xeric urban forest edges in Finland – the effects of edge aspect and trampling. Urban Ecosyst 13, 583–603 (2010). https://doi.org/10.1007/s11252-010-0142-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-010-0142-7

Keywords

Navigation