Skip to main content

Advertisement

Log in

Synergies: effects of source representation and goal instructions on evidence quality, reasoning, and conceptual integration during argumentation-driven inquiry

  • Published:
Instructional Science Aims and scope Submit manuscript

Abstract

This study examined how differing instructional scaffolding influenced the actual use of evaluation skills to improve argumentation quality during college science inquiry. Source representation scaffolds supported multi-faceted reflection of complex source properties while managing cognitive load. Students were given an online annotation tool (treatment) in addition to a checklist (control). Goal instructions intended to induce critical task perceptions and evaluation standards. Balanced reasoning goals (treatment) replaced a typical persuasion goal (control). Students from one introductory biology course were assigned to one of the two by two combinations, which was implemented over one academic semester. We examined student arguments during and after interventions respectively to measure evidence quality, reasoning, and conceptual integration. Overall, scaffolds did not influence argumentation independently; rather we detected complex interaction effects across scaffolds and classroom dynamics. For low-prior knowledge groups, annotation increased argumentation quality when complemented by balanced goals. For mixed-prior knowledge groups, annotation alone impacted on argumentation independent of goal instructions. Transfer effects were marginal yet promising for low-prior knowledge groups. The results supported the synergistic integration of two scaffolding functionality, yet suggested possible difficulties in using and sustaining scaffold effects in complex classroom situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The authors acknowledge Intel® Innovation in Education for permission to use the tool in this research.

  2. We computed similarity measures using log-likelihood distance; Schwarz’s Bayesian Criterion (BIC) and Chi square statistics determined the optimal number of clusters and key attributes separating clusters (Bacher et al. 2004; Norusis 2008).

References

  • Allen, D., & Tanner, K. (2005). Infusing active learning into the large-enrollment biology class: Seven strategies, from the simple to complex. Cell Biology Education, 4(4), 262–268. doi:10.1187/cbe.05-08-0113.

    Article  Google Scholar 

  • Asher, A. D. (2011). Search magic: Discovering how undergraduates find information. In Presented at the American Anthropological Association annual meeting, Montreal, Canada.

  • Bacher, J., Wenzig, K., & Vogler, M. (2004). SPSS twostep cluster: A first evaluation. Lehrstuhl für Soziologie. Retrieved from http://www.statisticalinnovations.com/products/twostep.pdf.

  • Belland, B. R. (2010). Portraits of middle school students constructing evidence-based arguments during problem-based learning: The impact of computer-based scaffolds. Educational Technology Research and Development, 58(3), 285–309. doi:10.1007/s11423-009-9139-4.

    Article  Google Scholar 

  • Biggs, J. B., & Collis, K. F. (1982). Evaluating the quality of learning: The SOLO taxonomy (structure of the observed learning outcome) (p. 1982). New York: Academic Press.

    Google Scholar 

  • Bottoni, P., Levialdi, S., & Rizzo, P. (2003). An analysis and case study of digital annotation. In N. Bianchi-Berthouze (Ed.), Databases in networked information systems (Vol. 2822, pp. 216–230). Berlin, Heidelberg: Springer. Retrieved from http://www.springerlink.com/content/u1cu2mx7cexjf01h/.

  • Bråten, I., Strømsø, H. I., & Britt, M. A. (2009). Trust matters: Examining the role of source evaluation in students’ construction of meaning within and across multiple texts. Reading Research Quarterly, 44(1), 6–28.

    Article  Google Scholar 

  • Brem, S. K., & Rips, L. J. (2000). Explanation and evidence in informal argument. Cognitive Science, 24, 573–604. doi:10.1016/S0364-0213(00)00033-1.

    Article  Google Scholar 

  • Brem, S. K., Russell, J., & Weems, L. (2001). Science on the Web: Student evaluations of scientific arguments. Discourse Processes, 32(2/3), 191–213.

    Article  Google Scholar 

  • Britt, M. A., & Aglinskas, C. (2002). Improving students’ ability to identify and use source information. Cognition and Instruction, 20(4), 485.

    Article  Google Scholar 

  • Britt, M. A., & Rouet, J.-F. (2011). Research challenges in the use of multiple documents. Information Design Journal + Document Design, 19(1), 62–68.

    Article  Google Scholar 

  • Carter, G., & Jones, M. G. (1994). Relationship between ability-paired interactions and the development of fifth graders’ concepts of balance. Journal of Research in Science Teaching, 31(8), 847–856.

    Article  Google Scholar 

  • Chi, M. T. H., Slotta, J. D., & De Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4(1), 27–43. doi:10.1016/0959-4752(94)90017-5.

    Article  Google Scholar 

  • Chinn, C. A., & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86(2), 175–218. doi:10.1002/sce.10001.

    Article  Google Scholar 

  • Clark, D. B., & Sampson, V. (2008). Assessing dialogic argumentation in online environments to relate structure, grounds, and conceptual quality. Journal of Research in Science Teaching, 45(3), 293–321. doi:10.1002/tea.20216.

    Article  Google Scholar 

  • Clark, D. B., Sampson, V., Weinberger, A., & Erkens, G. (2007). Analytic frameworks for assessing dialogic argumentation in online learning environments. Educational Psychology Review, 19(3), 343–374.

    Article  Google Scholar 

  • Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287–312.

    Article  Google Scholar 

  • Eysenbach, G., & Köhler, C. (2002). How do consumers search for and appraise health information on the world wide web? Qualitative study using focus groups, usability tests, and in-depth interviews. BMJ (Clinical Research Edition), 324(7337), 573–577.

    Article  Google Scholar 

  • Felton, M., Garcia-Mila, M., & Gilabert, S. (2009). Deliberation versus dispute: The impact of argumentative discourse goals on learning and reasoning in the science classroom. Informal Logic, 29(4), 417–446.

    Google Scholar 

  • Frazier, P. A., Tix, A. P., & Barron, K. E. (2004). Testing moderator and mediator effects in counseling psychology research. Journal of Counseling Psychology, 51(1), 115.

    Article  Google Scholar 

  • Gentner, D., & Stevens, A. L. (1983). Mental models. Hillsdale: L. Erlbaum Associates.

    Google Scholar 

  • Gilabert, S., Garcia-Mila, M., & Felton, M. K. (2013). The effect of task instructions on students’ use of repetition in argumentative discourse. International Journal of Science Education, 35(17), 2857–2878. doi:10.1080/09500693.2012.663191.

    Article  Google Scholar 

  • Harris, F. J. (2007). Challenges to teaching credibility assessment in contemporary schooling. In M. J. Metzger & A. J. Flanagin (Eds.), Digital media, youth, and credibility (pp. 155–180). Cambridge: The MIT Press.

  • Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In P. A. Hancock & N. Meshkati (Eds.), Human mental workload (pp. 139–183). Amsterdam: North-Holland.

    Chapter  Google Scholar 

  • Head, A. (2013). Project information literacy: What can be learned about the information- seeking behaviour of today’s college students? In Association of College and Research Libraries (ACRL) Proceedings 2013. Chicago: ALA.

  • Head, A., & Eisenberg, M. (2009). Lessons learned: How college students seek information in the digital age. Retrieved from http://projectinfolit.org/pdfs/PIL_Fall2009_finalv_YR1_12_2009v2.pdf.

  • Head, A., & Eisenberg, M. (2010). Truth be told: How college students evaluate and use information in the digital age. Retrieved from http://projectinfolit.org/pdfs/PIL_Fall2010_Survey_FullReport1.pdf.

  • Hirsch, R. (1989). Argumentation, information, and interaction: Studies in face-to-face interactive argumentation under differing turn-taking conditions. Göteborg: Department of Linguistics, University of Göteborg.

    Google Scholar 

  • Hjørland, B. (2012). Methods for evaluating information sources: An annotated catalogue. Journal of Information Science, 38(3), 258–268. doi:10.1177/0165551512439178.

    Article  Google Scholar 

  • Howell, G. T., & Lacroix, G. L. (2012). Decomposing interactions using GLM in combination with the COMPARE, LMATRIX and MMATRIX subcommands in SPSS. Tutorials in Quantitative Methods for Psychology, 8(1), 1–22.

    Article  Google Scholar 

  • Iding, M. K., Crosby, M. E., Auernheimer, B., & Barbara, E. (2008). Web site credibility: Why do people believe what they believe? Instructional Science, 37, 43–63. doi:10.1007/s11251-008-9080-7.

    Article  Google Scholar 

  • Jiang, L., & Elen, J. (2011). Why do learning goals (not) work: a reexamination of the hypothesized effectiveness of learning goals based on students’ behaviour and cognitive processes. Educational Technology Research and Development, 59(4), 553–573. doi:10.1007/s11423-011-9200-y.

    Article  Google Scholar 

  • Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness. Cambridge: Harvard University Press.

    Google Scholar 

  • Jonassen, D. H. (2010). Learning to solve problems a handbook for designig problem-solving learning environments. New York: Routledge.

    Google Scholar 

  • Jonassen, D. H., & Kim, B. (2010). Arguing to learn and learning to argue: Design justifications and guidelines. Educational Technology Research and Development, 58(4), 439–457.

    Article  Google Scholar 

  • Kalyuga, S. (2007). Expertise reversal effect and its implications for learner-tailored Instruction. Educational Psychology Review, 19(4), 509–539. doi:10.1007/s10648-007-9054-3.

    Article  Google Scholar 

  • Kalyuga, S. (2009). Knowledge elaboration: A cognitive load perspective. Learning and Instruction, 19(5), 402–410. doi:10.1016/j.learninstruc.2009.02.003.

    Article  Google Scholar 

  • Kalyuga, S. (2011). Informing: A cognitive load perspective. Informing Science, 14, 33–45.

    Google Scholar 

  • Kim, S. M. (2014). The effects of goal instructions and source representation scaffolds on college students’ information evaluation in a general education biology course: A mixed methods study (unpublished doctoral dissertation). Athens: University of Georgia.

    Google Scholar 

  • Kim, M. C., & Hannafin, M. J. (2011). Scaffolding 6th graders’ problem solving in technology-enhanced science classrooms: A qualitative case study. Instructional Science: An International Journal of the Learning Sciences, 39(3), 255–282.

    Article  Google Scholar 

  • Kim, S. M., & Hannafin, M. J. (2016). The effects of source representation and goal instructions on college students’ information evaluation behavior change. Computers in Human Behavior, 60, 384–397. doi:10.1016/j.chb.2016.02.044.

    Article  Google Scholar 

  • Kobayashi, K. (2006). Combined effects of note-taking/-reviewing on learning and the enhancement through interventions: A meta-analytic review. Educational Psychology, 26(3), 459–477.

    Article  Google Scholar 

  • Kuhn, D. (1989). Children and adults as intuitive scientists. Psychological Review, 96(4), 674–689. doi:10.1037/0033-295X.96.4.674.

    Article  Google Scholar 

  • Kuhn, D., Black, J., Keselman, A., & Kaplan, D. (2000). The development of cognitive skills to support inquiry learning. Cognition and Instruction, 18(4), 495–523. doi:10.1207/S1532690XCI1804_3.

    Article  Google Scholar 

  • Kuiper, E., Volman, M., & Terwel, J. (2005). The Web as an information resource in K-12 education: Strategies for supporting students in searching and processing information. Review of Educational Research, 75(3), 285–328.

    Article  Google Scholar 

  • Lazonder, A. W., & Rouet, J.-F. (2008). Information problem solving instruction: Some cognitive and metacognitive issues. Computers in Human Behavior, 24(3), 753–765. doi:10.1016/j.chb.2007.01.025.

    Article  Google Scholar 

  • Lee, Y.-J. (2004). Concept mapping your Web searches: a design rationale and Web-enabled application. Journal of Computer Assisted Learning, 20(2), 103–113. doi:10.1111/j.1365-2729.2004.00070.x.

    Article  Google Scholar 

  • Locke, E. A., & Latham, G. P. (2002). Building a practically useful theory of goal setting and task motivation: A 35-year odyssey. American Psychologist, 57(9), 705–717. doi:10.1037/0003-066X.57.9.705.

    Article  Google Scholar 

  • Marchionini, G. (2006). Exploratory search: From finding to understanding. Communications of ACM, 49(4), 41–46. doi:10.1145/1121949.1121979.

    Article  Google Scholar 

  • Mason, L., & Boldrin, A. (2008). Epistemic metacognition in the context of information searching on the Web. In M. S. Khine (Ed.), Knowing, knowledge and beliefs: Epistemological studies across diverse cultures (pp. 377–404). New York: Springer Science + Business Media.

    Chapter  Google Scholar 

  • Mason, L., Boldrin, A., & Ariasi, N. (2009). Searching the Web to learn about a controversial topic: Are students epistemically active? Instructional Science, 38(6), 607–633. doi:10.1007/s11251-008-9089-y.

    Article  Google Scholar 

  • Meola, M. (2004). Chucking the checklist: A contextual approach to teaching undergraduates Web-site evaluation. Libraries and the Academy, 4(3), 331–344.

    Article  Google Scholar 

  • Metzger, M. J. (2007). Making sense of credibility on the Web: Models for evaluating online information and recommendations for future research. Journal of the American Society for Information Science and Technology, 58(13), 2078–2091. doi:10.1002/asi.20672.

    Article  Google Scholar 

  • Mucci, L. (2011). Is it CRAP? Using a memorable acronym to teach critical website evaluation skills. Presented at the Wisconsin Association of Academic Librarians 2011 annual conference, Stevens Point, WI. http://www.slideshare.net/lisamucci/is-it-crap-using-a-memorable-acronym-to-teach-critical-website-evaluation-skills. Accessed 17 Jan 2012.

  • Norusis, M. (2008). SPSS 16.0 statistical procedures companion (2nd ed.). Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Nussbaum, E. M., & Kardash, C. M. (2005). The effects of goal instructions and text on the generation of counterarguments during writing. Journal of Educational Psychology, 97(2), 157–169. doi:10.1037/0022-0663.97.2.157.

    Article  Google Scholar 

  • Oh, E. G., & Reeves, T. C. (2015). Collaborating online: A logic model of online collaborative group work for adult learners. International Journal of Online Pedagogy and Course Design, 5(3), 47–61.

    Article  Google Scholar 

  • Page-Voth, V., & Graham, S. (1999). Effects of goal setting and strategy use on the writing performance and self-efficacy of students with writing and learning problems. Journal of Educational Psychology, 91(2), 230–240. doi:10.1037/0022-0663.91.2.230.

    Article  Google Scholar 

  • Pea, R. D. (2004). The social and technological dimensions of scaffolding and related theoretical concepts for learning, education, and human activity. Journal of the Learning Sciences, 13(3), 423–451.

    Article  Google Scholar 

  • Perfetti, C. A., Rouet, J.-F., & Britt, M. A. (1999). Toward a theory of documents representation. In H. van Oostendorp & S. R. Goldman (Eds.), The construction of mental representations during reading (pp. 99–122). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Puntambekar, S., & Hübscher, R. (2005). Tools for scaffolding students in a complex learning environment: What have we gained and what Have we missed? Educational Psychologist, 40(1), 1–12. doi:10.1207/s15326985ep4001_1.

    Article  Google Scholar 

  • Quintana, C., Zhang, M., & Krajcik, J. (2005). A Framework for supporting metacognitive aspects of online inquiry yhrough software-based scaffolding. Educational Psychologist, 40(4), 235–244. doi:10.1207/s15326985ep4004_5.

    Article  Google Scholar 

  • Rieh, S. Y., & Hilligoss, B. (2008). College students’ credibility judgments in the information-seeking process. In M. J. Metzger & A. J. Flanagin (Eds.), Digital media, youth, and credibility (pp. 49–71). Cambridge: MIT Press.

    Google Scholar 

  • Rouet, J.-F. (2009). Managing cognitive load during document-based learning. Learning and Instruction, 19(5), 445–450. doi:10.1016/j.learninstruc.2009.02.007.

    Article  Google Scholar 

  • Russell, D. M., Stefik, M. J., Pirolli, P. L., & Card, S. K. (1993). The cost structure of sensemaking. In Presented at the ACM SIGCHI conference on human factors in computing systems (pp. 269–276).

  • Saracevic, T. (2007). Relevance: A review of the literature and a framework for thinking on the notion in information science. Part III: Behavior and effects of relevance. Journal of the American Society for Information Science and Technology, 58(13), 2126–2144. doi:10.1002/asi.20681.

    Article  Google Scholar 

  • Seel, N. M. (2001). Epistemology, situated cognition, and mental models:’Like a bridge over troubled water’. Instructional Science, 29(4–5), 403–427.

    Article  Google Scholar 

  • Sharma, P., & Hannafin, M. J. (2007). Scaffolding in technology-enhanced learning environments. Interactive Learning Environments, 15(1), 27–46. doi:10.1080/10494820600996972.

    Article  Google Scholar 

  • Slavin, R. E. (1995). Cooperative learning: Theory, research, and practice (Vol. 2). Boston: Allyn and Bacon. Retrieved from http://www.getcited.org/pub/103185225.

  • Song, L., Hannafin, M. J., & Hill, J. R. (2007). Reconciling beliefs and practices in teaching and learning. Educational Technology Research and Development, 55(1), 27–50.

    Article  Google Scholar 

  • Stadtler, M., & Bromme, R. (2007). Dealing with multiple documents on the WWW: The role of metacognition in the formation of documents models. International Journal of Computer-Supported Collaborative Learning, 2(2–3), 191–210.

    Article  Google Scholar 

  • Stadtler, M., Scharrer, L., & Bromme, R. (2011). How reading goals and rhetorical signals influence recipients’ recognition of intertexual conflicts. In L. Carlson, C. Hoelscher, & T. F. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Sceicne Society (pp. 1346–1351). Austin, TX: Cognitive Sciecne Society.

  • Suthers, D. D., & Hundhausen, C. D. (2003). An experimental study of the effects of representational guidance on collaborative learning processes. The Journal of the Learning Sciences, 12(2), 183–218.

    Article  Google Scholar 

  • Tabak, I. (2004). Synergy: A complement to emerging patterns of distributed scaffolding. Journal of the Learning Sciences, 13(3), 305–335.

    Article  Google Scholar 

  • Tabatabai, D., & Shore, B. M. (2005). How experts and novices search the Web. Library and Information Science Research (07408188), 27(2), 222–248. doi:10.1016/j.lisr.2005.01.005.

    Article  Google Scholar 

  • Teddlie, C., & Tasshakori, A. (2006). A general typology of research designs featuring mixed methods. Research in the Schools, 13(1), 12–28.

    Google Scholar 

  • Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge University Press.

    Google Scholar 

  • Tsai, C.-C. (2004). Information commitments in web-based learning environments. Innovations in Education and Teaching International, 41(1), 105–112.

    Article  Google Scholar 

  • van Gog, T., Ericsson, K. A., Rikers, R. M. J. P., & Paas, F. (2005). Instructional design for advanced learners: Establishing connections between the theoretical frameworks of cognitive load and deliberate practice. Educational Technology Research and Development, 53(3), 73–81.

    Article  Google Scholar 

  • White, B. Y., & Frederiksen, J. R. (1998). Inquiry, modeling, and metacognition: Making science accessible to all students. Cognition and Instruction, 16(1), 3–118.

    Article  Google Scholar 

  • Wiley, J., Goldman, S. R., Graesser, A. C., Sanchez, C. A., Ash, I. K., & Hemmerich, J. A. (2009). Source evaluation, comprehension, and learning in internet science inquiry tasks. American Educational Research Journal, 46(4), 1060–1106.

    Article  Google Scholar 

  • Wineburg, S. S. (1994). The cognitive representation of historical texts. In G. Leinhardt, I. L. Beck, & C. Stainton (Eds.), Teaching and learning in history (pp. 85–135). Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Wineburg, S. S. (1998). Reading Abraham Lincoln: An expert/expert study in the interpretation of historical texts. Cognitive Science, 22(3), 319–346. doi:10.1016/S0364-0213(99)80043-3.

    Article  Google Scholar 

  • Winne, P. H., & Nesbit, J. C. (2009). Supporting self-regulated learning with cognitive tools. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), Handbook of metacognition in education (pp. 259–277). New York: Routledge.

    Google Scholar 

  • Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry and Allied Disciplines, 17(2), 89–100. doi:10.1111/1469-7610.ep11903728.

    Article  Google Scholar 

  • Wopereis, I., & van Merrienboer, J. J. G. (2011). Evaluating text-based information on the World Wide Web. Learning and Instruction, 21(2), 232–237.

    Article  Google Scholar 

  • Wu, Y.-T., & Tsai, C.-C. (2005). Information commitments: Evaluative standards and information searching strategies in web-based learning environments. Journal of Computer Assisted Learning, 21(5), 374–385. doi:10.1111/j.1365-2729.2005.00144.x.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to So Mi Kim.

Appendices

Appendix 1

See Table 8.

Table 8 Argumentation quality scoring rubrics

Appendix 2

See Table 9.

Table 9 Student task perception attributes list

Appendix 3

See Table 10.

Table 10 Task perception clustering results and cluster profiles

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.M., Hannafin, M.J. Synergies: effects of source representation and goal instructions on evidence quality, reasoning, and conceptual integration during argumentation-driven inquiry. Instr Sci 44, 441–476 (2016). https://doi.org/10.1007/s11251-016-9381-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11251-016-9381-1

Keywords

Navigation