Skip to main content

Advertisement

Log in

Anaplasma ovis infection in sheep from Iran: molecular prevalence, associated risk factors, and spatial clustering

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

The aim of this cross-sectional study was to determine the molecular prevalence and associated risk factors in sheep populations of Iran. To this end, between March 2017 and February 2018 jugular vein blood samples were collected from 1842 apparently healthy sheep from 327 herds in nine provinces in four ecological zones of Iran. A specific nested-PCR targeting the msp4 gene of A. ovis was employed. Fourteen variables were subjected to logistic regression analyses (univariate and multivariate) to specify the potential risk factors for infection. Statistically significant variables in univariate analyses (P ≤ 0.20) were assessed by multivariable logistic regression to control the confounding factors. Anaplasma ovis DNA was detected in 51.1% of herds (167/327) and 28.3% of animals (521/1842). Among geographical zones, herd and animal prevalence was highest in the Persian-Gulf zone (P < 0.001), and among provinces, Lorestan (in west) and Khuzestan (in south-west) had the highest prevalence (P < 0.001). Analysis of factors associated with A. ovis infection revealed that distance from other farms (OR = 2.52, P < 0.001), presence of other animal species in the farm (OR = 2.03, P = 0.046), season (OR = 1.40, P = 0.005), breed (OR = 3.762, P < 0.001), and age of sheep (OR = 1.20, P = 0.049) are potential risks in Iran. The spatial scan statistic in SaTScan recognized two high risks clusters for A. ovis infection in central (Semnan province) and the Persian-Gulf (Khuzestan province) zones amongst the study areas (P < 0.001). Sequence and phylogenetic analysis of the msp4 gene confirmed the detection of A. ovis. This research is the largest study focusing on ovine anaplasmosis in Iran and shows that infected sheep are present in all geographic zones, bioclimatic areas, and provinces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are however available from the corresponding author upon reasonable request. The provided GenBank accession number for our nucleotide sequence is MZ383975.

Code availability

Not applicable.

References

  • Aktas, M. and Özübek, S., 2018. Anaplasma ovis genetic diversity detected by major surface protein 1a and its prevalence in small ruminants, Veterinary Mcrobiology, 217, 13-17.

    Article  CAS  Google Scholar 

  • Alanazi, A.D., Nguyen, V.L., Alyousif, M.S., Manoj, R.R., Alouffi, A.S., Donato, R., Sazmand, A., Mendoza-Roldan, J.A., Dantas-Torres, F. and Otranto, D., 2020. Ticks and associated pathogens in camels (Camelus dromedarius) from Riyadh Province, Saudi Arabia, Parasites & Vectors, 13, 1-9.

    Article  Google Scholar 

  • Altay, K., Dumanli, N., Aktas, M. and Ozubek, S., 2014. Survey of Anaplasma infections in small ruminants from East part of Turkey, Kafkas Universitesi Veteriner Fakultesi Dergisi, 20, 1-4.

    Google Scholar 

  • Belkahia, H., Ben Said, M., El Hamdi, S., Yahiaoui, M., Gharbi, M., Daaloul-Jedidi, M., Mhadhbi, M., Jedidi, M., Darghouth, M.A. and Klabi, I., 2014. First molecular identification and genetic characterization of Anaplasma ovis in sheep from Tunisia, Small Ruminant Research, 121, 404-410.

    Article  Google Scholar 

  • Belkahia, H., Ben Said, M., El Mabrouk, N., Saidani, M., Cherni, C., Ben Hassen, M., Bouattour, A. and Messadi, L., 2017. Seasonal dynamics, spatial distribution and genetic analysis of Anaplasma species infecting small ruminants from Northern Tunisia, Infection, Genetics and Evolution, 54, 66-73.

    Article  CAS  PubMed  Google Scholar 

  • Belkahia, H., Ben Said, M., Ghribi, R., Selmi, R., Asker, A.B., Yahiaoui, M., Bousrih, M., Daaloul-Jedidi, M. and Messadi, L., 2019. Molecular detection, genotyping and phylogeny of Anaplasma spp. in Rhipicephalus ticks from Tunisia, Acta Tropica, 191, 38-49.

    Article  PubMed  Google Scholar 

  • Ben Said, M., Belkahia, H., Alberti, A., Zobba, R., Bousrih, M., Yahiaoui, M., Daaloul-Jedidi, M., Mamlouk, A., Gharbi, M. and Messadi, L., 2015. Molecular survey of Anaplasma species in small ruminants reveals the presence of novel strains closely related to A. phagocytophilum in Tunisia, Vector-Borne and Zoonotic Diseases, 15, 580-590.

    Article  PubMed  Google Scholar 

  • Ben Said, M., Belkahia, H. and Messadi, L., 2018. Anaplasma spp. in North Africa: a review on molecular epidemiology, associated risk factors and genetic characteristics, Ticks and Tick-borne Diseases, 9, 543-555.

    Article  PubMed  Google Scholar 

  • Cabezas-Cruz, A., Gallois, M., Fontugne, M., Allain, E., Denoual, M., Moutailler, S., Devillers, E., Zientara, S., Memmi, M., Chauvin, A., Agoulon, A., Vayssier-Taussat, M. and Chartier, C., 2019. Epidemiology and genetic diversity of Anaplasma ovis in goats in Corsica, France, Parasites & Vectors, 12, 1-11.

    Article  Google Scholar 

  • Changizi, E., 2015. Prevalence, intensity and associated risk factors for ovine tick infestation in two districts of Semnan area, Iranian Journal of Veterinary Medicine, 8, 287-292.

    Google Scholar 

  • Chochlakis, D., Ioannou, I., Tselentis, Y. and Psaroulaki, A., 2010. Human anaplasmosis and Anaplasma ovis variant, Emerging infectious diseases, 16, 1031-1032.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ciani, E., Alloggio, I., Petazzi, F. and Pieragostini, E., 2013. Looking for prognosticators in ovine anaplasmosis: discriminant analysis of clinical and haematological parameters in lambs belonging to differently susceptible breeds experimentally infected with Anaplasma ovis, Acta Veterinaria Scandinavica, 55, 1-5.

    Article  Google Scholar 

  • Dantas-Torres, F. and Otranto, D., 2017. Anaplasmosis. In: C.B. Marcondes (ed), Arthropod Borne Diseases, 2017, (Springer, Cham, Switzerland), 215-222.

    Google Scholar 

  • de la Fuente, J., Atkinson, M.W., Naranjo, V., de Mera, I.G.F., Mangold, A.J., Keating, K.A. and Kocan, K.M., 2007. Sequence analysis of the msp4 gene of Anaplasma ovis strains, Veterinary Mcrobiology, 119, 375-381.

    Article  Google Scholar 

  • de la Fuente, J., Estrada-Pena, A., Venzal, J.M., Kocan, K.M. and Sonenshine, D.E., 2008. Overview: ticks as vectors of pathogens that cause disease in humans and animals, Frontiers in Bioscience, 13, 6938-6946.

    Article  PubMed  Google Scholar 

  • Delpy, L.-P., 1939. Agents pathogènes observés en Iran dans le sang des animaux domestiques, Archives of Razi Institute, 1, 72-77.

    Google Scholar 

  • Eydivandi, S., Sahana, G., Momen, M., Moradi, M. and Schönherz, A., 2020. Genetic diversity in Iranian indigenous sheep vis-à-vis selected exogenous sheep breeds and wild mouflon, Animal Genetics, 51, 772-787.

    Article  CAS  PubMed  Google Scholar 

  • Farahani, A., Razi-Jalali, M.H., Hamidinejat, H. and Tabandeh, M.R., 2020. Determination of fauna of hard ticks on sheep in Khuzestan province, Iran, Journal of Isfahan Medical School, 37, 1376-1380.

    Google Scholar 

  • Friedhoff, K., 1997. Tick-borne diseases of sheep and goats caused by Babesia, Theileria or Anaplasma spp, Parassitologia, 39, 99-109.

    CAS  PubMed  Google Scholar 

  • Ghaffar, A., Ijaz, M., Ali, A., Farooqi, S.H., Rehman, A., Ali, M.M., Zafar, M.Z. and Naeem, M.A., 2020. First report on molecular characterization of anaplasmosis in small ruminants in Pakistan, Journal of Parasitology, 106, 360-368.

    Article  Google Scholar 

  • Gharbi, M., Omri, H., Jedidi, M., Zorii, S. and Darghouth, M., 2015. Epidemiological study of sheep anaplasmosis (Anaplasma ovis infection) in Kairouan, central Tunisia, Journal of Advances in Parasitology, 2, 30-34.

    Article  Google Scholar 

  • Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symposium Series, 41, 95-98.

    CAS  Google Scholar 

  • Hosseini-Vasoukolaei, N., Oshaghi, M.A., Shayan, P., Vatandoost, H., Babamahmoudi, F., Yaghoobi-Ershadi, M.R., Telmadarraiy, Z. and Mohtarami, F., 2014. Anaplasma infection in ticks, livestock and human in Ghaemshahr, Mazandaran Province, Iran, Journal of Arthropod-Borne Diseases, 8, 204-211.

    PubMed  PubMed Central  Google Scholar 

  • Jalali, S., Khaki, Z., Kazemi, B., Bandehpour, M., Rahbari, S., Razi Jalali, M. and Yasini, S., 2013. Molecular detection and identification of Anaplasma species in sheep from Ahvaz, Iran, Iranian Journal of Veterinary Research, 14, 50-56.

    Google Scholar 

  • Jiménez, C., Benito, A., Arnal, J., Ortín, A., Gómez, M., López, A., Villanueva-Saz, S. and Lacasta, D., 2019. Anaplasma ovis in sheep: Experimental infection, vertical transmission and colostral immunity, Small Ruminant Research, 178, 7-14.

    Article  Google Scholar 

  • Kocan, K.M., de la Fuente, J., Blouin, E.F., Coetzee, J.F. and Ewing, S.A., 2010. The natural history of Anaplasma marginale, Veterinary Parasitology, 167, 95-107.

    Article  CAS  PubMed  Google Scholar 

  • Kulldorff, M., 2010. SaTScan user guide for version 9.0. Available at: http://www.scribd.com/doc/88420107/Current-Version-SaTScan-v9-1-1-Released-March-92011#scribd.

  • Mlimbe, M., Hyera, E., Ochanga, P., Nguluma, A., Marwa, L., Rugaimukamu, A., Godfrey, J., Ngabo, M. and Shirima, E., 2021. Study on the causes and pattern of sheep mortality under farm conditions in Northern Tanzania, Livestock Research for Rural Development, 32, 2020.

    Google Scholar 

  • Mohammadian, B., Noaman, V. and Emami, S.J., 2021. Molecular survey on prevalence and risk factors of Anaplasma spp. infection in cattle and sheep in West of Iran, Tropical Animal Health and Production, 53, 1-7.

    Article  Google Scholar 

  • Nabian, S., Rahbari, S., Shayan, P. and Hadadzadeh, H., 2007. Current status of tick fauna in north of Iran, Iranian Journal of Parasitology, 2, 12-17.

    Google Scholar 

  • Niaz, S., Zia Ur Rahman, I.A., Cossío-Bayúgar, R., Amaro-Estrada, I., Alanazi, A.D., Khattak, I., Zeb, J., Nasreen, N. and Khan, A., 2021. Molecular prevalence, characterization and associated risk factors of Anaplasma spp. and Theileria spp. in small ruminants in Northern Pakistan, Parasite, 28, 1-13.

    Article  Google Scholar 

  • Noaman, V., 2012. Identification of hard ticks collected from sheep naturally infected with Anaplasma ovis in Isfahan province, central Iran, Comparative Clinical Pathology, 21, 367-369.

    Article  Google Scholar 

  • Noaman, V., 2018. Molecular detection of novel genetic variants associated to Anaplasma ovis among dromedary camels in Iran, Archives of Razi Institute, 73, 11-18.

    CAS  PubMed  Google Scholar 

  • Noaman, V., 2020. Epidemiological study on Anaplasma phagocytophilum in cattle: molecular prevalence and risk factors assessment in different ecological zones in Iran, Preventive Veterinary Medicine, 183, 105118.

    Article  PubMed  Google Scholar 

  • Noaman, V., Abdigoudarzi, M. and Nabinejad, A., 2017. Abundance, diversity, and seasonal dynamics of hard ticks infesting cattle in Isfahan Province, Iran, Archives of Razi Institute, 72, 15-21.

    Google Scholar 

  • Noaman, V. and Bastani, D., 2016. Molecular study on infection rates of Anaplasma ovis and Anaplasma marginale in sheep and cattle in West-Azerbaijan province, Iran, Veterinary Research Forum, 7, 163-167.

    PubMed  PubMed Central  Google Scholar 

  • Noaman, V. and Moradi, M., 2019. Molecular epidemiology and risk factors assessment of Anaplasma spp. on dairy cattle in southwest of Iran, Acta Veterinaria Eurasia, 45, 30-36.

    Article  Google Scholar 

  • Noaman, V., Shayan, P. and Shahmoradi, A., 2009. Detection of Anaplasma ovis based on 16S rRNA gene by PCR-RFLP in sheep from central part of Iran, Journal of Veterinary Laboratory Research, 1, 27-37.

    Google Scholar 

  • Rahbari, S., 1995. Studies on some ecological aspects of Tick West Azarbidjan, Iran, Journal of Applied Animal Research, 7, 189-194.

    Article  Google Scholar 

  • Reinbold, J.B., Coetzee, J.F., Hollis, L.C., Nickell, J.S., Riegel, C.M., Christopher, J.A. and Ganta, R.R., 2010. Comparison of iatrogenic transmission of Anaplasma marginale in Holstein steers via needle and needle-free injection techniques, American Journal of Veterinary Research, 71, 1178-1188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renneker, S., Abdo, J., Salih, D., Karagenç, T., Bilgiç, H., Torina, A., Oliva, A., Campos, J., Kullmann, B. and Ahmed, J., 2013. Can Anaplasma ovis in small ruminants be neglected any longer?, Transboundary and Emerging Diseases, 60, 105-112.

    Article  PubMed  Google Scholar 

  • Sazmand, A., Harl, J., Eigner, B., Hodžić, A., Beck, R., Hekmatimoghaddam, S., Mirzaei, M., Fuehrer, H.-P. and Joachim, A., 2019. Vector-borne bacteria in blood of camels in Iran: new data and literature review, Comparative Immunology, Microbiology and Infectious Diseases, 65, 48-53.

    Article  PubMed  PubMed Central  Google Scholar 

  • Selmi, R., Said, M.B., Dhibi, M., Yahia, H.B., Abdelaali, H. and Messadi, L., 2020. Genetic diversity of groEL and msp4 sequences of Anaplasma ovis infecting camels from Tunisia, Parasitology International, 74, 101980.

    Article  CAS  PubMed  Google Scholar 

  • Soosaraei, M., Haghi, M.M., Etemadifar, F., Fakhar, M., Teshnizi, S.H., Asfaram, S. and Esboei, B.R., 2020. Status of Anaplasma spp. infection in domestic ruminants from Iran: A systematic review with meta-analysis. Parasite Epidemiology and Control, 11, e00173.

  • Tamura, K. and Nei, M., 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees, Molecular Biology and Evolution, 10, 512-526.

    CAS  PubMed  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S., 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Molecular Biology and Evolution, 28, 2731-2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thrusfield, M. and Christley, R., 2018. Veterinary Epidemiology, (John Wiley & Sons, NJ, USA.)

    Book  Google Scholar 

  • Torina, A., Agnone, A., Blanda, V., Alongi, A., D’Agostino, R., Caracappa, S., Marino, A.M., Di Marco, V. and de la Fuente, J., 2012. Development and validation of two PCR tests for the detection of and differentiation between Anaplasma ovis and Anaplasma marginale, Ticks and Tick-borne Diseases, 3, 283-287.

    Article  PubMed  Google Scholar 

  • Yasini, S., Khaki, Z., Rahbari, S., Kazemi, B., Amoli, J.S., Gharabaghi, A. and Jalali, S., 2012. Hematologic and clinical aspects of experimental ovine anaplasmosis caused by Anaplasma ovis in Iran, Iranian Journal of Parasitology, 7, 91-98.

    PubMed  PubMed Central  Google Scholar 

  • Yousefi, A., Rahbari, S., Shayan, P., Sadeghi-dehkordi, Z. and Bahonar, A., 2017. Molecular detection of Anaplasma marginale and Anaplasma ovis in sheep and goat in west highland pasture of Iran, Asian Pacific Journal of Tropical Biomedicine, 7, 455-459.

    Article  Google Scholar 

  • Zhou, M., Cao, S., Sevinc, F., Sevinc, M., Ceylan, O., Ekici, S., Jirapattharasate, C., Moumouni, P.F.A., Liu, M. and Wang, G., 2017. Molecular detection and genetic characterization of Babesia, Theileria and Anaplasma amongst apparently healthy sheep and goats in the central region of Turkey, Ticks and Tick-borne Diseases, 8, 246-252.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank farmers, veterinarians, and laboratory colleagues who assisted us with sampling.

Author information

Authors and Affiliations

Authors

Contributions

VN conceived the study and performed fieldwork. VN performed laboratory work. VN and AS performed and analyzed data. VN and AS wrote the first draft of the manuscript. AS reviewed the manuscript. VN and AS read and approved the final manuscript.

Corresponding author

Correspondence to Vahid Noaman.

Ethics declarations

Ethics approval

Blood samples were taken according to the methods and guidelines of animal ethics approved by the Animal Ethics Committee of AREEO. All sampling was done with the permission of the livestock owner.

Consent to participate

Before each interview, verbal informed consent was acquired from all livestock owners.

Consent for publication

All authors read and consent to the publication of the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noaman, V., Sazmand, A. Anaplasma ovis infection in sheep from Iran: molecular prevalence, associated risk factors, and spatial clustering. Trop Anim Health Prod 54, 6 (2022). https://doi.org/10.1007/s11250-021-03007-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-021-03007-4

Keywords

Navigation