Skip to main content
Log in

Precision finishing of South African lambs in feedlots: a review

  • Reviews
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

In the intensification of sheep production systems, feedlot finishing plays a fundamental role in preparing lambs for slaughter, as well as relieving the grazing pressure on pasture. The profit margins in feedlot operations are often narrow and require the economics of scale to generate a sufficient income. In order to minimise expenses, intensive management and precision rearing of lambs to an ideal slaughter weight is needed to obtain premium carcass prices. The South African sheep industry is made up of wool, dual-purpose as well as meat type breeds, which also vary in terms of maturity. In order to implement precision finishing of South African lamb, a complete understanding of the growth, intake and fat deposition trends of growing lambs of different breed types is needed. This review outlines feedlot lamb production within the Southern African context for the major commercial breeds, while also providing insight in the considerations necessary to develop a decision support system for lamb rearing. Integrating such a decision support system into a lamb feedlot operation can then be used for precision finishing of lambs by predicting the optimal length of the feeding period and ideal slaughter weights of lambs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Addah, W., Ayantunde, A. Okine, E.K., 2017. Effects of restricted feeding and re-alimentation of dietary protein or energy on compensatory growth of sheep. South African Journal of Animal Science, 47, 389-396.

    CAS  Google Scholar 

  • Alfonso, M., Sañudo, C., Berge, P., Fisher, A.V., Stamataris, C., Thorkelsson, G., Piasentier, E., 2001. Influential factors in lamb meat quality. Acceptability of specific designations, in: Rubino, R., Morand-Fehr, P., (eds) Production systems and product quality in sheep and goats, pp. 19-28.

  • Allen, M.S., 1996. Physical constraints on voluntary intake of forages by ruminants. Journal of Animal Science, 74, 3063-3075.

    CAS  Google Scholar 

  • Andargachew, K., Brokken, R.F., 1993. Intra-annual sheep price patterns and factors underlying price variations in the central highlands of Ethiopia. Agricultural Economics, 8, 125-138.

    Google Scholar 

  • Barnes, A.L., Wickham, S.L., Admiraal, R., Miller, D.W., Collins, T., Stockman, C., Fleming, P.A., 2018. Characterization of inappetent sheep in a feedlot using radio-tracking technology. Journal of Animal Science, 96, 902-911.

    Google Scholar 

  • Bathaei, S.S., Leroy, P.L., 1996. Growth and mature weight of Mehraban Iranian fat-tailed sheep. Small Ruminant Research, 22, 155-162.

    Google Scholar 

  • Ben Salem, H., Nefzaoui, A., 2003. Feed blocks as alternative supplements for sheep and goats. Small Ruminant Research, 49, 275-288.

    Google Scholar 

  • Bello, J.M., Mantecón, A.R., Rodriguez, M., Cuestas, R., Beltran, J.A., Gonzalez, J.M., 2016. Fattening lamb nutrition. Approaches and strategies in feedlot. Small Ruminant Research, 142, 78-82.

    Google Scholar 

  • Brand, T.S., 2000. Grazing behaviour and diet selection by Dorper sheep. Small Ruminant Research, 36, 147-158.

    CAS  Google Scholar 

  • Brand, T.S., Genis, M.P., Hoffman, L.C., Van De Vyver, W.F.J., Swart, R., Jordaan, G.F., 2013. The effect of dietary energy and the inclusion of a β-adrenergic agonist in the diet on the meat quality of feedlot lambs. South African Journal of Animal Science, 43, 140-145.

    Google Scholar 

  • Brand, T.S., Van der Westhuizen, E.J., Van der Merwe, D.A., Hoffman, L.C., 2017. Effect of days in feedlot on growth performance and carcass characteristics of Merino, South African Mutton Merino and Dorper lambs. South African Journal of Animal Science, 47, 26-33.

    CAS  Google Scholar 

  • Brand, T.S., Van Der Westhuizen, E.J., van Der Merwe, D.A., Hoffman, L.C., 2018. Analysis of carcass characteristics and fat deposition of Merino, South African Mutton Merino and Dorper lambs housed in a feedlot. South African Journal of Animal Science, 48, 477-488.

    CAS  Google Scholar 

  • Brown, D.J., Savage, D.B., Hinch, G.N., Hatcher, S., 2015. Monitoring liveweight in sheep is a valuable management strategy: a review of available technologies. Animal Production Science, 55, 427-436.

    Google Scholar 

  • Bruwer, G.G., Grobler, I., Smit, M., Naudé, R.T., Vosloo, W.A., 1987a. An evaluation of the lamb and mutton carcase grading system in the Republic of South Africa. 4. The influence of age, carcase mass and fatness on meat quality characteristics. South African Journal of Animal Science, 17, 95-103.

    Google Scholar 

  • Bruwer, G.G., Naude, R.T., Du Toit, M.M., Cloete, A., Vosloo, W.A., 1987b. An evaluation of the lamb and mutton carcase grading system in the Republic of South Africa. 2. The use of fat measurements as predictors of carcase composition. South African Journal of Animal Science, 17, 85-89.

    Google Scholar 

  • Bruwer, G.G., Naudé, R.T., Vosloo, W.A., 1987c. An evaluation of the lamb and mutton carcase grading system in the Republic of South Africa. 3. Fatness score, conformation score and carcase mass as predictors of carcase composition. South African Journal of Animal Science, 17, 90-94.

    Google Scholar 

  • Burger, A., Hoffman, L.C., Cloete, J.J.E., Muller, M., Cloete, S.W.P., 2013. Carcass composition of Namaqua Afrikaner, Dorper and SA Mutton Merino ram lambs reared under extensive conditions. South African Journal of Animal Science, 43, 27-32.

    Google Scholar 

  • Butterfield, R.M., 1988. New concept of sheep growth. Department of Veterinary Anatomy, University of Sydney. Australia. pp 2-33.

    Google Scholar 

  • Cannas, A., Tedeschi, L.O., Fox, D.G., Pell, A.N., Van Soest, P.J., 2004. A mechanistic model for predicting the nutrient requirements and feed biological values for sheep. Journal of Animal Science, 82, 149-169.

    CAS  Google Scholar 

  • Cloete, J.J E., Hoffman, L.C., Cloete, S.W.P., Fourie, J.E., 2004b. A comparison between the body composition, carcass characteristics and retail cuts of South African Mutton Merino and Dormer sheep. South African Journal of Animal Science, 34, 44-51.

    Google Scholar 

  • Cloete, J.J.E., Hoffman, L.C., Cloete, S.W.P., 2012. A comparison between slaughter traits and meat quality of various sheep breeds: Wool, dual-purpose and mutton. Meat Science., 91, 318-324.

    CAS  Google Scholar 

  • Cloete, S.W.P., Cloete, J.J.E., Durand, A., Hoffman, L.C., 2003. Production of five Merino type lines in a terminal crossbreeding system with Dormer or Suffolk sires. South African Journal of Animal Science, 33, 223-232.

    Google Scholar 

  • Cloete, S.W.P., De Villiers, T.T., 1987. Production parameters for a commercial Dorper flock on extensive pastures. South African Journal of Animal Science, 17, 121-127.

    Google Scholar 

  • Cloete, S.W.P., Olivier, J.J., Olivier, W.J., 2007. Genetic change in South African Merino resource flocks. Proceedings of the Association for the Advancement of Animal Breeding and Genetics, 17, 320-323.

    Google Scholar 

  • Cloete, S.W.P., Olivier, J.J., Sandenbergh, L., Snyman, M.A., 2014. The adaption of the South Africa sheep industry to new trends in animal breeding and genetics: A review. South African Journal of Animal Science, 44, 307-321.

    Google Scholar 

  • Cloete, S.W.P., Schoeman, S.J., Coetzee, J., Morris, J.D.V., 2001. Genetic variances for liveweight and fleece traits in Merino, Dohne Merino and South African Meat Merino sheep. Australian Journal of Experimental Agriculture, 41, 145-153.

    Google Scholar 

  • Cloete, S.W.P., Snyman, M.A., Herselman, M.J., 2000. Productive performance of Dorper sheep. Small Ruminant Research, 36, 119-135.

    CAS  Google Scholar 

  • Cloete, S.W.P., Van Wyk, J.B., Neser, F.W.C., 2004a. Estimates of genetic and environmental (co) variances for live weight and fleece traits in yearling South African Mutton Merino sheep. South African Journal of Animal Science, 34, 37-43.

    Google Scholar 

  • Coetzee, J., 2004. Latest sheep farming practices for maximum profit generation (translated from Afrikaans). Copyright Jasper Coetzee Consulting, pp 230-240.

  • Dabiri, N., Morris, S.T., Wallentine, M., McCutcheon, S.N., Parker, W.J., Wickham, G.A., 1996. Effects of pre-lamb shearing on feed intake and associated productivity of May-and August-lambing ewes. New Zealand Journal of Agricultural Research, 39, 53-62.

    Google Scholar 

  • da Silva, L.S.A., Fraga, A.B., da Silva, F.D.L., Beelen, P.M.G., de Oliveira Silva, R.M., Tonhati, H., da Costa Barros, C., 2012. Growth curve in Santa Inês sheep. Small Ruminant Research, 105, 182-185.

    Google Scholar 

  • Davel, M., Bosman, M.J.C., Webb, E.C., 2003. Effect of electrical stimulation of carcasses from Dorper sheep with two permanent incisors on the consumer acceptance of mutton. South African Journal of Animal Science, 33, 206-212.

    Google Scholar 

  • De Bruyn, J.F., 1991. Production and product characteristics of different cattle genotypes under feedlot conditions. D.Sc. (Agric) Thesis. University of Pretoria.

  • Delgado, C., Rosegrant, M., Steinfeld, H., Ehui, S., Courbois, C., 1999. Livestock to 2020 the next food revolution. Food Agriculture and the Environment Discussion Paper 28, International food policy institute, pp. 1-52.

  • Della-Fera, M.A., Baile, C.A., 1984. Control of feed intake in sheep. Journal of Animal Science, 59, 1362-1368.

    CAS  Google Scholar 

  • Department of Agriculture, Forestry & Fisheries. 2019. Abstract of Agricultural statistics. DAFF: Directorate statistics and economic analysis, South Africa. pp 61-63. (https://www.daff.gov.za/Portals/0/Statistics%20and%20Economic%20Analysis/Statistical%20Information/Abstract%202019.pdf). Accessed 3 June 2020.

  • Donnelly, J.R., Freer, M., Salmon, L., Moore, A.D., Simpson, R.J., Dove, H., Bolger, T.P., 2002. Evolution of the GRAZPLAN decision support tools and adoption by the grazing industry in temperate Australia. Agricultural Systems, 74, 115-139.

    Google Scholar 

  • Du Plessis, J.J., De Wet, P.J., 1981. Nitrogen utilization by sheep. 1. Nitrogen utilization by weaned lambs of a wool, a wool/mutton and a mutton/wool breed for wool and body protein formation. Agroanimalia, 13: 21-27.

    Google Scholar 

  • Emmans G.C., 1989. Chapter 8 The growth of turkeys. In: Nixey, C., Grey, T.C. (eds), Recent advances in turkey science (Poultry science symposium number 21). By Butterworth and Heineman. Ltd.

  • Ermias, E., Yami, A., Rege, J.E.O., 2002. Fat deposition in tropical sheep as adaptive attribute to periodic feed fluctuation. Journal of Animal Breeding and Genetics, 119, 235-246.

    Google Scholar 

  • FAOSTAT. 2019. http://www.fao.org/faostat/en/#data/RL (Accessed 18 October 2019).

  • Faverdin, P., 1999. The effect of nutrients on feed intake in ruminants. Proceedings of the Nutrition Society, 58, 523-531.

    CAS  Google Scholar 

  • Field, R.A., Snowder, G.D., Maiorano, G., McCormick, R.J., Riley, M.L., 1993. Growth and slaughter characteristics of ram and wether lambs implanted with zeranol. Journal of Animal Science, 71, 631-635.

    CAS  Google Scholar 

  • Finlayson, J.D., Cacho, O.J., Bywater, A.C., 1995. A simulation model of grazing sheep: I. Animal growth and intake. Agricultural Systems, 48, 1-25.

    Google Scholar 

  • Gerrits, W.J., Tolman, G.H., Schrama, J.W., Tamminga, S., Bosch, M.W., Verstegen, M.W., 1996. Effect of protein and protein-free energy intake on protein and fat deposition rates in preruminant calves of 80 to 240 kg live weight. Journal of Animal Science, 74, 2129-2139.

    CAS  Google Scholar 

  • Goshu, A.T., Koya, P.R., 2013. Derivation of inflection points of nonlinear regression curves-implications to statistics. American Journal of Theoretical and Applied Statistics, 2, 268-272.

    Google Scholar 

  • Gous, R.M., 2014. Modeling as a research tool in poultry science. Poultry Science, 93, 1-7.

    CAS  Google Scholar 

  • Government Notice No. R. 863 2006. Agricultural product standards Act 119 of 1990. Regulations regarding the classification and marketing of meat in the Republic of South Africa.

  • Greenhalgh, J.F.D., Reid, G.W., 1973. The effects of pelleting various diets on intake and digestibility in sheep and cattle. Animal Science, 16, 223-233.

    Google Scholar 

  • Grill, L., Ringdorfer, F., Baumung, R., Fuerst-Waltl, B., 2015. Evaluation of ultrasound scanning to predict carcass composition of Austrian meat sheep. Small Ruminant Research, 123, 260–268.

    Google Scholar 

  • Halachmi, I., Guarino, M., Bewley, J., Pastell, M., 2019. Smart animal agriculture: application of real-time sensors to improve animal well-being and production. Annual Review of Animal Biosciences, 7, 403-425.

    Google Scholar 

  • Hamlin, K.E., Green, R.D., Cundiff, L.V., Wheeler, T.L., Dikeman, M.E., 1995. Real-time ultrasonic measurement of fat thickness and longissimus muscle area: II. Relationship between real-time ultrasound measures and carcass retail yield. Journal of Animal Science, 73, 1725-1734.

    CAS  Google Scholar 

  • Hopkins, D. L., Hall, D. G., Luff, A. F., 1996. Lamb carcass. 3. Describing changes in carcasses of growing lambs using real-time ultrasound and the use of these measurements for estimating the yield of saleable meat. Australian Journal of Experimental Agriculture, 36, 37–43.

    Google Scholar 

  • Hopkins, D.L., Pirlot, K.L., Roberts, A.H.K. & Beattie, A.S., 1993. Changes in fat depths and muscle dimensions in growing lambs as measured by real-time ultrasound. Australian Journal of Experimental Agriculture, 33, 707-712.

    Google Scholar 

  • Hopkins, D.L., Stanley, D.F. & Ponnampalam, E.N., 2007. Relationship between real-time ultrasound and carcass measures and composition in heavy sheep. Australian Journal of Experimental Agriculture, 47, 1304–1308.

    Google Scholar 

  • Illius, A.W., Jessop, N.S., Gill, M., 2000. Mathematical models of food intake and metabolism in ruminants, in: Cronjé P.B., (ed) Ruminant physiology, digestion, metabolism growth and reproduction (). CABI Publishing, Wallingford, 21-40.

    Google Scholar 

  • Ingvartsen, K.L., 1994. Models of voluntary food intake in cattle. Livestock Production Science, 39, 19-38.

    Google Scholar 

  • Johnson, I.R., France, J., Thornley, J.H.M., Bell, M.J., Eckard, R.J., 2012. A generic model of growth, energy metabolism, and body composition for cattle and sheep. Journal of Animal Science, 90, 4741-4751.

    CAS  Google Scholar 

  • Kempster, A.J., 1981. Fat partition and distribution in the carcasses of cattle, sheep and pigs: a review. Meat Science, 5, 83-98.

    CAS  Google Scholar 

  • Keskin, I., Dag, B., Sariyel, V., Gokmen, M., 2009. Estimation of growth curve parameters in Konya Merino sheep. South African Journal of Animal Science, 39, 163-168.

    Google Scholar 

  • Keady, T.W.J., Hanrahan, J.P., 2015. Effects of shearing, forage type and feed value, concentrate feed level, and protein concentration on the performance of housed finishing lambs. Journal of Animal Science, 93, 306-318.

    CAS  Google Scholar 

  • Kleen, J.L., Hooijer, G.A., Rehage, J., Noordhuizen, J.P.T.M., 2003. Subacute ruminal acidosis (SARA): a review. Journal of Veterinary Medicine Series A., 50, 406-414.

    CAS  Google Scholar 

  • Lawrence, T. L. J., Fowler, V. R., Novakofksi J. E. 2012. Growth of farm animals. 2nd edition. CABI. pp. 216-228

  • Lewis, R.M., Emmans, G.C., 2010. Feed intake of sheep as affected by body weight, breed, sex, and feed composition. Journal of Animal Science, 88, 467-480.

    CAS  Google Scholar 

  • Lewis, R.M., Notter, D.R., Hogue, D.E., Magee, B.H., 1996. Ewe fertility in the STAR accelerated lambing system. Journal of Animal Science, 74, 1511-1522.

    CAS  Google Scholar 

  • Lima, N.L.L., Ribeiro, C.R.D.F., Sá, H.C.M.D., Leopoldino-Júnior, I., Cavalcanti, L.F.L., Santana, R.A.V., Furusho-Garcia, I.F., Pereira, I.G., 2017. Economic analysis, performance, and feed efficiency in feedlot lambs. Revista Brasileira de Zootecnia, 46, 821-829.

    Google Scholar 

  • Malhado, C., Carneiro P., Affonso P., Souza Jr A., Sarmento J., 2009. Growth curves in Dorper sheep crossed with the local brazilian breeds, Morada nova, Rabo largo, & Santa inês. Small Ruminant Research. 84, 16-21.

    Google Scholar 

  • Marino, R., Atzori, A.S., D'Andrea, M., Iovane, G., Trabalza-Marinucci, M., Rinaldi, L., 2016. Climate change: Production performance, health issues, greenhouse gas emissions and mitigation strategies in sheep and goat farming. Small Ruminant Research, 135, 50-59.

    Google Scholar 

  • Meissner, H.H., Hofmeyr, H.S., Van Rensburg, W.J.J., Pienaar, J.P., 1983. Classification of livestock for realistic prediction of substitution values in terms of a biologically defined Large Stock Unit. Technical Communication 175. Department of Agriculture, Republic of South Africa.

  • Meissner, H.H., Scholtz, M.M., Engelbrecht, F.A., 2013. Sustainability of the South African Livestock Sector towards 2050 Part 2: Challenges, changes and required implementations. South African Journal of Animal Science, 43, 289-319.

    Google Scholar 

  • Milne, C., 2000. The history of the Dorper sheep. Small Ruminant Research, 36, 99-102.

    CAS  Google Scholar 

  • Ministry of Agriculture, Fisheries and Food (MAFF), 1975. Energy allowances and feeding systems for ruminants. Tech Bull. 33, Ministry of Agriculture and Fisheries. Her Majesty’s Stationary Office, London, pp 79.

  • Mohapatra, A., Shinde, A., 2018. Fat-tailed sheep-an important sheep genetic resource for meat production in tropical countries: an overview. Indian Journal of Small Ruminants, 24, 1-17.

    Google Scholar 

  • Moreira, R.P., Pedrosa, V.B., Falcão, P.R., de Fátima Sieklicki, M., Rocha, C.G., dos Santos, I.C., Ferreira, E.M., de Souza Martins, A., 2016. Growth curves for Ile de France female sheep raised in feedlot. Semina: Ciências Agrárias, 37, 303-310.

    Google Scholar 

  • Morgan-Davies, C., Lambe, N., Wishart, H., Waterhouse, T., Kenyon, F., McBean, D., McCracken, D., 2018. Impacts of using a precision livestock system targeted approach in mountain sheep flocks. Livestock Science, 208, 67-76.

    Google Scholar 

  • Morris, J.E., Cronin, G.M., Bush, R.D., 2012. Improving sheep production and welfare in extensive systems through precision sheep management. Animal Production Science, 52, 665-670.

    Google Scholar 

  • Najari, S., Gaddoun, A., Hamouda, M.B., Djemali, M., Khaldi, G., 2007. Growth model adjustment of local goat population under pastoral conditions in Tunisian arid zone. Journal of Agronomy, 6, 61-67

    Google Scholar 

  • National Research Council, 2017. Nutrient requirements of small ruminants: sheep, goats, cervids and new world camelids. National Academic Press, Washington.

    Google Scholar 

  • Negussie, E., Rottmann, O.J., Pirchner, F., Rege, J.E.O., 2003. Patterns of growth and partitioning of fat depots in tropical fat-tailed Menz and Horro sheep breeds. Meat Science, 64, 491-498.

    CAS  Google Scholar 

  • Neser, F.W.C., Erasmus, G.J., Van Wyk, J.B., 2000. Genetic studies on the South African Mutton Merino: growth traits. South African Journal of Animal Science, 30, 172-177.

    Google Scholar 

  • Owens, F.N., Dubeski, P., Hanson, C.F., 1993. Factors that alter the growth and development of ruminants. Journal of Animal Science, 71, 3138-3150.

    CAS  Google Scholar 

  • Pannier, L., Gardner, G.E., Pethick, D.W., 2019. Effect of Merino sheep age on consumer sensory scores, carcass and instrumental meat quality measurements. Animal Production Science, 59, 1349-1359.

    Google Scholar 

  • Peters, F.W., Kotze, A., Van der Bank F.H., Soma, P., Grobler, J.P., 2010. Genetic profile of the locally developed Meatmaster sheep breed in South Africa based on microsatellite analysis. Small Ruminant Research, 90, 101-108.

    Google Scholar 

  • Pienaar, G.H., Einkamerer, O.B., Van der Merwe, H.J., Hugo, A., Scholtz, G.D.J., Fair, D.M., 2012. The effects of an active live yeast product on the growth performance of finishing lambs. South African Journal of Animal Science, 42, 464-468.

    Google Scholar 

  • Price, M.M., Einkamerer, O.B., De Witt, F.H., Greyling, J.P.C., Fair, M.D., 2009. The effect of dietary ionophores on feedlot performance of lambs. South African Journal of Animal Science, 39, 141-144.

    Google Scholar 

  • Pulina, G., Avondo, M., Molle, G., Francesconi, A.H.D., Atzori, A.S., Cannas, A., 2013. Models for estimating feed intake in small ruminants. Revista Brasileira de Zootecnia., 42, 675-690.

    Google Scholar 

  • Qwabe, S.O., van Marle-Köster, E., Visser, C., 2013. Genetic diversity and population structure of the endangered Namaqua Afrikaner sheep. Tropical Animal Health and Production, 45, 511-516.

    Google Scholar 

  • Red Meat Producers Organisation, 2019. (http://www.rpo.co.za/information-centre/absa/weekly-prices/) Accessed 1 September 2019.

  • Rust, J.M., Rust, T., 2013. Climate change and livestock production: A review with emphasis on Africa. South African Journal of Animal Science, 43, 255-267.

    Google Scholar 

  • Sandenbergh, L., Cloete, S.W.P. Olivier, J.J., 2018, Assessing the occurrence of hybridisation in endangered indigenous sheep. In Proc. of the 11th World Congress on Genetics Applied to Livestock Production, Auckland, New Zealand (pp. 11-16).

  • Schoeman, S.J., Cloete, S.W.P., Olivier, J.J., 2010. Returns on investment in sheep and goat breeding in South Africa. Livestock Science, 130, 70-82.

    Google Scholar 

  • Schönfeldt, H.C., Naude, R.T., Bok, W., Van Heerden, S.M., Smit, R., Boshoff, E., 1993. Flavour-and tenderness-related quality characteristics of goat and sheep meat. Meat Science, 34, 363-379.

    Google Scholar 

  • Schönfeldt, H.C., Van Heerden, S.M., Sainsbury, J., Gibson, N., 2011. Nutrient content of uncooked and cooked meat from South African classes A2 lamb and C2 mutton. South African Journal of Animal Science, 41, 141-145.

    Google Scholar 

  • Scott, J.T., Broadbent, E.E., 1972. A computerized cattle feeding program for replacement and ration formulation. Illinois Agricultural Economics, 12, 16-25.

    Google Scholar 

  • Shanmugavelu, S., Wong, H.K., Mardhati, M., 2012. A beef fattening decision support system. Malaysian Journal of Veterinary Research, 3, 7-13.

    Google Scholar 

  • Silva, S.R., Gomes, M.J., Dias-da-Silva, A., Gil, L.F., Azevedo, J.M.T.D., 2005. Estimation in vivo of the body and carcass chemical composition of growing lambs by real-time ultrasonography. Journal of Animal Science, 83, 350–357.

    CAS  Google Scholar 

  • Soma, P., Kotze, A., Grobler, J.P., Van Wyk, J.B., 2012. South African sheep breeds: Population genetic structure and conservation implications. Small Ruminant Research, 103, 112-119.

    Google Scholar 

  • Snyman, M.A., Herselman, M.J., 2005. Comparison of productive and reproductive efficiency of Afrino, Dorper and Merino sheep in the False Upper Karoo. South African Journal of Animal Science, 35, 98-108.

    Google Scholar 

  • Stanford, K., Bailey, D.R.C., Jones, S.D.M., Price, M.A., Kemp, R.A., 2001. Ultrasound measurement of longissimus dimensions and backfat in growing lambs: effects of age, weight and sex. Small Ruminant Research, 42, 189–195.

    Google Scholar 

  • Stanford, K., Jones, S.D.M., Price, M.A., 1998. Methods of predicting lamb carcass composition: A review. Small Ruminant Research, 29, 241-254.

    Google Scholar 

  • Strydom, P.E., Van Heerden, S.M., Van Heerden, H.C., Kruger, R., Smith, M.F., 2009. The influence of fat score and fat trimming on primal cut composition of South African lamb. South African Journal of Animal Science, 39, 233-242.

    Google Scholar 

  • Tainton N.M., 1988. A consideration of veld condition assessment techniques for commercial livestock production in South Africa, Journal of the Grassland Society of South Africa, 5, 76-79.

    Google Scholar 

  • Tedeschi, L.O., Cannas, A., Fox, D.G., 2010. A nutrition mathematical model to account for dietary supply and requirements of energy and other nutrients for domesticated small ruminants: The development and evaluation of the Small Ruminant Nutrition System. Small Ruminant Research, 89, 174-184.

    Google Scholar 

  • Tedeschi, L.O., Fox, D.G., Guiroy, P.J., 2004. A decision support system to improve individual cattle management. 1. A mechanistic, dynamic model for animal growth. Agricultural Systems, 79, 171-204.

    Google Scholar 

  • Terblanche, S., Brand, T.S., Jordaan, J.W., Van der Walt, J.C., 2012. Production response of lambs receiving creep feed while grazing two different pastures. South African Journal of Animal Science, 42, 535-539.

    Google Scholar 

  • Thornley, J.H.M., France, J., 2007. Mathematical models in agriculture: Quantitative methods for the plant, animal and ecological sciences. 2nd. CABI. London.

    Google Scholar 

  • Tshabalala, P.A., Strydom, P.E., Webb, E.C., De Kock, H.L., 2003. Meat quality of designated South African indigenous goat and sheep breeds. Meat Science, 65, 563-570.

    CAS  Google Scholar 

  • Van de Vyver, W.F.J., Beukes, J.A., Meeske, R., 2013. Maize silage as a finisher feed for Merino lambs. South African Journal of Animal Science, 43, 116-120.

    Google Scholar 

  • Van Wyk, J.B., Fair, M.D., Cloete, S.W.P., 2003. Revised models and genetic parameter estimates for production and reproduction traits in the Elsenburg Dormer sheep stud. South African Journal of Animal Science, 33, 213-222.

    Google Scholar 

  • Van Wyk, J.B., Swanepoel, J.W., Cloete, S.W., Olivier, J.J., Delport, G.J., 2008. Across flock genetic parameter estimation for yearling body weight and fleece. South African Journal of Animal Science, 38, 31-37.

    Google Scholar 

  • Vieira, P.A.S., Pereira, L.G.R., Azevêdo, J.A.G., Neves, A.L.A., Chizzotti, M.L., dos Santos, R.D., de Araújo, G.G.L., Mistura, C., Chaves, A.V., 2013. Development of mathematical models to predict dry matter intake in feedlot Santa Ines rams. Small Ruminant Research, 112, 78-84.

    Google Scholar 

  • Vorster, M., Botha, P., Hobson, F.O. 1983. The utilization of karoo veld by livestock, Proceedings of the Annual Congress of the Grassland Society of Southern Africa, 18, 35-39.

    Google Scholar 

  • Walmsley, B.J., McPhee, M.J., Oddy, V.H., 2014. Development of the BeefSpecs fat calculator to assist decision making to increase compliance rates with beef carcass specifications. Animal Production Science, 54, 2003-2010.

    Google Scholar 

  • Wathes, C.M., Kristensen, H.H., Aerts, J.M., Berckmans, D., 2008. Is precision livestock farming an engineer's daydream or nightmare, an animal's friend or foe, and a farmer's panacea or pitfall? Computers and Electronics in Agriculture, 64, 2-10.

    Google Scholar 

  • Watson, R.H., Alexander, G., Cumming, I.A., MacDonald, J.W., McLaughlin, J.W., Rizzoli, D.J., Williams, D., 1968. Reduction of perinatal loss of lambs in winter in western Victoria by lambing in sheltered individual pens. Proceedings of the Australian Society of Animal Production; 7th Biennial meeting. pp 243-249

  • Webb, E.C., Casey, N.H., 2010. Physiological limits to growth and the related effects on meat quality. Livestock Science, 130, 33-40.

    Google Scholar 

  • Webb, E.C., 2015. Description of carcass classification goals and the current situation in South Africa. South African Journal of Animal Science, 45, 229-233.

    CAS  Google Scholar 

  • Webb, E.C., Allen, J., Morris, S.D., 2018. Effects of non-steroidal growth implant and dietary zilpaterol hydrochloride on growth and carcass characteristics of feedlot lambs. South African Journal of Animal Science, 48, 601-608.

    CAS  Google Scholar 

  • Webb, E.C., O’neill, H.A., 2008. The animal fat paradox and meat quality. Meat Science, 80, 28-36.

    CAS  Google Scholar 

  • Webster, A.J.F., 1980. The Energetic efficiency of growth. Livestock Production Science, 7, 243-252.

    Google Scholar 

  • Wolfger, B., Timsit, E., Pajor, E.A., Cook, N., Barkema, H.W., Orsel, K., 2015. Accuracy of an ear tag-attached accelerometer to monitor rumination and feeding behavior in feedlot cattle. Journal of Animal Science, 93, 3164-3168.

    CAS  Google Scholar 

  • Wood, J.D., MacFie, H.J.H., 1980. The significance of breed in the prediction of lamb carcass composition from fat thickness measurements. Animal Science, 31, 315-319.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Brand.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Der Merwe, D.A., Brand, T.S. & Hoffman, L.C. Precision finishing of South African lambs in feedlots: a review. Trop Anim Health Prod 52, 2769–2786 (2020). https://doi.org/10.1007/s11250-020-02282-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-020-02282-x

Keywords

Navigation