Skip to main content
Log in

Maternal supplementation with fish oil modulates inflammation-related MicroRNAs and genes in suckling lambs

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

Dietary n-3 long-chain fatty acids (n-3 LCFA) have been shown to modify lipid metabolism and immune function. The objective of this study was to evaluate the effect of periparturient fish oil (FO) supplementation on the inflammation and metabolic health of ewes and their lambs at a molecular level. Prepartum ewes were fed control diet (CON, n = 12) or CON supplemented with 2% DM of calcium soap of FO (n = 12) from 28 days before until 21 days after parturition. The ewes were evaluated for plasma metabolites and milk composition. The experiment was followed by analyzing the relative transcript abundance of circulating microRNAs (miRNAs) in plasma and targeted miRNA/mRNA expression in peripheral blood mononuclear cells (PBMCs) in both ewes and lambs. FO treatment decreased prepartum feed intake (1812 ± 35 vs 1674 ± 33 g/day, P < 0.01), whereas the influence on plasma metabolites was negligible. Dietary FO supplementation decreased milk fat percentage (8.82 ± 0.49 vs 7.03 ± 0.45, P = 0.02) and reduced milk n-6/n-3 (P < 0.05). Also, it altered the expression of plasma-circulating miRNAs in both ewe and lamb (P < 0.05). Furthermore, maternal nutrition of FO downregulated the relative expression of miR-33a and miR-146b and transcript abundance of genes IL-1β (0.41-fold) and NF-κB (0.25-fold) in lambs’ PBMC. In conclusion, results showed that FO supplementation starting antepartum affects milk composition and circulating miRNA in dams and the inflammatory markers in lambs delivered by the supplemented ewes. These may provide a strategy to maintain immune balance during gestation and develop the immune system in lambs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afonso, M.B., Rodrigues, P.M., Simao, A.L., and Castro, R.E., 2016. Circulating microRNAs as Potential Biomarkers in Non-Alcoholic Fatty Liver Disease and Hepatocellular Carcinoma, Journal of Clinical Medicine Research, 5: 30

    Google Scholar 

  • Ahn, J., Lee, H., Jung, C.H., Jeon, T.I., and Ha, T.Y., 2013. MicroRNA-146b promotes adipogenesis by suppressing the SIRT1-FOXO1 cascade, EMBO Molecular Medicine, 5, 1602-1612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allam-Ndoul, B., Guénard, F., Barbier, O., and Vohl, M.-C., 2017. Effect of different concentrations of omega-3 fatty acids on stimulated THP-1 macrophages, Genes & Nutrition, 12, 7

    CAS  Google Scholar 

  • Almeida, O.C., Ferraz, M.V.C., Susin, I., Gentil, R.S., Polizel, D.M., Ferreira, E.M., Barroso, J.P.R., and Pires, A.V., 2019. Plasma and milk fatty acid profiles in goats fed diets supplemented with oils from soybean, linseed or fish, Small Ruminant Research, 170, 125-130

    Google Scholar 

  • Annett, M., Annett, R.W., Carson, A.F., and Dawson, L.E.R., 2008. Effects of digestible undegradable protein (DUP) supply and fish oil supplementation of ewes during late pregnancy on colostrum production and lamb output, Anim. Feed Science and Technology, 146, 270–288

    CAS  Google Scholar 

  • Annett, R.W., Dawson, L.E.R., Edgar, H., and Carson, A.F., 2009. Effects of source and level of fish oil supplementation in late pregnancy on feed intake, colostrum production and lamb output of ewes, Animal Feed Science and Technology, 154, 169-182

    CAS  Google Scholar 

  • Arrese, M., Eguchi, A., and Feldstein, A.E., 2015. Circulating microRNAs: emerging biomarkers of liver disease, Seminars in Liver Disease, 35, 43-54

    CAS  PubMed  Google Scholar 

  • Bakker, G.C., van Erk, M.J., Pellis, L., Wopereis, S., Rubingh, C.M., Cnubben, N.H., Kooistra, T., van Ommen, B., and Hendriks, H.F., 2010. An antiinflammatory dietary mix modulates inflammation and oxidative and metabolic stress in overweight men: a nutrigenomics approach, American Journal of Clinical Nutrition, 91, 1044-1059

    CAS  PubMed  Google Scholar 

  • Baum, J.R., Dolmatova, E., Tan, A., and Duffy, H.S., 2012. Omega 3 fatty acid inhibition of inflammatory cytokine-mediated Connexin43 regulation in the heart, Frontiers in Physiology, 3, 272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bichi, E., Hervas, G., Toral, P.G., Loor, J.J., and Frutos, P., 2013. Milk fat depression induced by dietary marine algae in dairy ewes: persistency of milk fatty acid composition and animal performance responses, Journal of Dairy Science, 96, 524-532

    CAS  PubMed  Google Scholar 

  • Bontempo, V., Sciannimanico, D., Pastorelli, G., Rossi, R., Rosi, F., and Corino, C., 2004. Dietary conjugated linoleic acid positively affects immunologic variables in lactating sows and piglets, J Nutr, 134, 817-824

    CAS  PubMed  Google Scholar 

  • Bouwens, M., Afman, L.A., and Muller, M., 2007. Fasting induces changes in peripheral blood mononuclear cell gene expression profiles related to increases in fatty acid beta-oxidation: functional role of peroxisome proliferator activated receptor alpha in human peripheral blood mononuclear cells, American Journal of Clinical Nutrition, 86, 1515-1523

    CAS  PubMed  Google Scholar 

  • Calder, P.C., 2001. Polyunsaturated fatty acids, inflammation, and immunity, Lipids, 36, 1007-1024

  • Calder, P.C., 2002. Dietary modification of inflammation with lipids, Proceedings of the Nutrition Society, 61, 345-358

  • Calder, P.C., 2011. Fatty acids and inflammation: the cutting edge between food and pharma, European Journal of Pharmacology, 668 Suppl 1, S50-58

  • Cant, J.P., Fredeen, A.H., MacIntyre, T., Gunn, J., and Crowe, N., 1997. Prognostic factors and survival of ALS patients from Belgrade, Serbia, Canadian Journal of Animal Science, 77, 125-131

    CAS  Google Scholar 

  • Capper, J.L., Wilkinson, R.G., Mackenzie, A.M., and Sinclair, L.A., 2007. The effect of fish oil supplementation of pregnant and lactating ewes on milk production and lamb performance, Animal, 1, 889-898

    CAS  PubMed  Google Scholar 

  • Caroprese, M., Albenzio, M., Annicchiarico, G., and Sevi, A., 2006. Changes occurring in immune responsiveness of single- and twin-bearing Comisana ewes during the transition period, Journal of Dairy Science, 89, 562-568

    CAS  PubMed  Google Scholar 

  • Caroprese, M., Ciliberti, M.G., Albenzio, M., Annicchiarico, G., and Sevi, A., 2015. Dietary polyunsaturated fatty acids from flaxseed affect immune responses of dairy sheep around parturition, Veterinary Immunology and Immunopathology, 168, 56-60

    CAS  PubMed  Google Scholar 

  • Carreno, D., Hervas, G., Toral, P.G., Castro-Carrera, T., and Frutos, P., 2016. Fish oil-induced milk fat depression and associated downregulation of mammary lipogenic genes in dairy ewes, Journal of Dairy Science, 99, 7971-7981

    CAS  PubMed  Google Scholar 

  • Celikbilek, M., Baskol, M., Taheri, S., Deniz, K., Dogan, S., Zararsiz, G., Gursoy, S., Guven, K., Ozbakir, O., Dundar, M., and Yucesoy, M., 2014. Circulating microRNAs in patients with non-alcoholic fatty liver disease, World Journal of Hepatology, 6, 613-620

    PubMed  PubMed Central  Google Scholar 

  • Cermelli, S., Ruggieri, A., Marrero, J.A., Ioannou, G.N., and Beretta, L., 2011. Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease, PloS One, 6, e23937

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman, D.N., Rivera-Acevedo, K.C., and Relling, A.E., 2018. Prepartum fatty acid supplementation in sheep I. Eicosapentaenoic and docosahexaenoic acid supplementation do not modify ewe and lamb metabolic status and performance through weaning, Journal of Animal Science, 96, 364-374

    CAS  PubMed Central  Google Scholar 

  • Curtis, C.L., Hughes, C.E., Flannery, C.R., Little, C.B., Harwood, J.L., and Caterson, B., 2000. n-3 fatty acids specifically modulate catabolic factors involved in articular cartilage degradation, Journal of Biological Chemistry, 275, 721-724

    CAS  PubMed  Google Scholar 

  • Didara, M., Poljicak-Milas, N., Milinkovic-Tur, S., Masek, T., Suran, J., Pavic, M., Kardum, M., and Speranda, M., 2015. Immune and oxidative response to linseed in the diet of periparturient Holstein cows, Animal, 9, 1349-1354

    CAS  PubMed  Google Scholar 

  • DiStefano, J.K., and Gerhard, G.S., 2016. Circulating microRNAs in nonalcoholic fatty liver disease, Expert Review of Gastroenterology & Hepatology, 10, 161-163

    CAS  Google Scholar 

  • Ebrahimi, M., Rajion, M.A., Meng, G.Y., Farjam, A.S., Oskoueian, E., and Jafari, S., 2015. Diet high in α-linolenic acid up-regulate PPAR-α gene expression in the liver of goats, Electronic Journal of Biotechnology, 18, 210-214

    CAS  Google Scholar 

  • Endres, S., Ghorbani, R., Kelley, V.E., Georgilis, K., Lonnemann, G., van der Meer, J.W., Cannon, J.G., Rogers, T.S., Klempner, M.S., Weber, P.C. et al., 1989. The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells, New England Journal of Medicine, 320, 265-271

    CAS  PubMed  Google Scholar 

  • Fougere, H., Bernard, L., 2019. Effect of diets supplemented with starch and corn oil, marine algae, or hydrogenated palm oil on mammary lipogenic gene expression in cows and goats: A comparative study, Journal of Dairy Science, 102, 768-779

    CAS  PubMed  Google Scholar 

  • Friedewald, W.T., Levy, R.I., and Fredrickson, D.S., 1972. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge, Clinical Chemistry, 18, 499-502

    CAS  PubMed  Google Scholar 

  • Frutos, P., Toral, P.G., Belenguer, A., and Hervas, G., 2018. Milk fat depression in dairy ewes fed fish oil: Might differences in rumen biohydrogenation, fermentation, or bacterial community explain the individual variation?, Journal of Dairy Science, 101, 6122-6132

    CAS  PubMed  Google Scholar 

  • Gallardo, B., Gomez-Cortes, P., Mantecon, A.R., Juarez, M., Manso, T., and de la Fuente, M.A., 2014. Effects of olive and fish oil Ca soaps in ewe diets on milk fat and muscle and subcutaneous tissue fatty-acid profiles of suckling lambs, Animal, 8, 1178-1190

    CAS  PubMed  Google Scholar 

  • Garcia, M., Greco, L.F., Favoreto, M.G., Marsola, R.S., Wang, D., Shin, J.H., Block, E., Thatcher, W.W., Santos, J.E., and Staples, C.R., 2014. Effect of supplementing essential fatty acids to pregnant nonlactating Holstein cows and their preweaned calves on calf performance, immune response, and health, J Dairy Sci, 97, 5045-5064

    CAS  PubMed  Google Scholar 

  • Gessner, D.K., Grone, B., Couturier, A., Rosenbaum, S., Hillen, S., Becker, S., Erhardt, G., Reiner, G., Ringseis, R., and Eder, K., 2015. Dietary Fish Oil Inhibits Pro-Inflammatory and ER Stress Signalling Pathways in the Liver of Sows during Lactation, PloS One, 10, e0137684

    PubMed  PubMed Central  Google Scholar 

  • Grasedieck, S., Sorrentino, A., Langer, C., Buske, C., Dohner, H., Mertens, D., and Kuchenbauer, F., 2013. Circulating microRNAs in hematological diseases: principles, challenges, and perspectives, Blood, 121, 4977-4984

    CAS  PubMed  Google Scholar 

  • Guo, J., Fang, W., Sun, L., Lu, Y., Dou, L., Huang, X., Sun, M., Pang, C., Qu, J., Liu, G., and Li, J., 2016. Reduced miR-200b and miR-200c expression contributes to abnormal hepatic lipid accumulation by stimulating JUN expression and activating the transcription of srebp1, Oncotarget, 7, 36207-36219

    PubMed  PubMed Central  Google Scholar 

  • Hankenson, K.D., Watkins, B.A., Schoenlein, I.A., Allen, K.G., and Turek, J.J., 2000. Omega-3 fatty acids enhance ligament fibroblast collagen formation in association with changes in interleukin-6 production, Proceedings of the Society for Experimental Biology and Medicine, 223, 88-95

    CAS  PubMed  Google Scholar 

  • Hannah, V.C., Ou, J., Luong, A., Goldstein, J.L., and Brown, M.S., 2001. Unsaturated fatty acids down-regulate srebp isoforms 1a and 1c by two mechanisms in HEK-293 cells, Journal of Biological Chemistry, 276, 4365-4372

    CAS  PubMed  Google Scholar 

  • He, X., Zhang, H., Yang, X., Zhang, S., Dai, Q., Xiao, W., and Ren, G., 2007. Modulation of immune function by conjugated linoleic acid in chickens, Food and Agricultural Immunology, 18, 169-178

    CAS  Google Scholar 

  • Hopperton, K.E., Trepanier, M.O., James, N.C.E., Chouinard-Watkins, R., and Bazinet, R.P., 2017. Fish oil feeding attenuates neuroinflammatory gene expression without concomitant changes in brain eicosanoids and docosanoids in a mouse model of Alzheimer's disease, Brain, Behavior, and Immunity, 69: 74-90

    PubMed  Google Scholar 

  • Hu, P., Tan, X., Li, J., Liu, L., Liu, C., Wang, Q., Peng, X., Cao, P., Zhou, J., and Cao, K., 2016. Effect of miR-195 on proliferation and adipogenic differentiation of hADSCs, International Journal of Clinical and Experimental Pathology, 9, 1204-1212

    CAS  Google Scholar 

  • Hubler, M.J., and Kennedy, A.J., 2016. Role of lipids in the metabolism and activation of immune cells, Journal of Nutritional Biochemistry, 34, 1-7

  • Ioannidis, J., Sánchez-Molano, E., Psifidi, A., Donadeu, F.X., and Banos, G., 2018. Association of plasma microRNA expression with age, genetic background and functional traits in dairy cattle, Scientific Reports, 8, 12955

    PubMed  PubMed Central  Google Scholar 

  • Itoh, T., Fairall, L., Amin, K., Inaba, Y., Szanto, A., Balint, B.L., Nagy, L., Yamamoto, K., and Schwabe, J.W., 2008. Structural basis for the activation of PPARgamma by oxidized fatty acids, Nature Structural & Molecular Biology, 15, 924-931

    CAS  Google Scholar 

  • Jeong, B.C., Kang, I.H., and Koh, J.T., 2014. MicroRNA-302a inhibits adipogenesis by suppressing peroxisome proliferator-activated receptor gamma expression, FEBS Letters, 588, 3427-3434

    CAS  PubMed  Google Scholar 

  • Jolazadeh, A.R., Mohammadabadi, T., Dehghan-banadaky, M., Chaji, M., and Garcia, M., 2019. Effect of supplementing calcium salts of n-3 and n-6 fatty acid to pregnant nonlactating cows on colostrum composition, milk yield, and reproductive performance of dairy cows, Animal Feed Science and Technology, 247, 127-140

    CAS  Google Scholar 

  • Kasimanickam, V., and Kastelic, J., 2016. Circulating cell-free mature microRNAs and their target gene prediction in bovine metritis, Scientific Reports, 6, 29509

    PubMed  PubMed Central  Google Scholar 

  • Keady, T.W., Mayne, C.S., and Fitzpatrick, D.A., 2000. Effects of supplementation of dairy cattle with fish oil on silage intake, milk yield and milk composition, Journal of Dairy Research, 67, 137-153

    CAS  PubMed  Google Scholar 

  • Konig, B., Koch, A., Spielmann, J., Hilgenfeld, C., Stangl, G.I., and Eder, K., 2007. Activation of PPARalpha lowers synthesis and concentration of cholesterol by reduction of nuclear SREBP-2, Biochemical Pharmacology, 73, 574-585

    PubMed  Google Scholar 

  • Lessard, M., Gagnon, N., and Petit, H.V., 2003. Immune response of postpartum dairy cows fed flaxseed, J Dairy Sci, 86, 2647-2657

    CAS  PubMed  Google Scholar 

  • Lotfollahzadeh, S., Zakian, A., Tehrani-Sharif, M., and Watson, D.G., 2016. Assessment the alterations of some biochemical parameters in Afshari sheep with possible metabolic disorders, Small Ruminant Research, 145, 58-64

    Google Scholar 

  • Luna, P., Bach, A., Juárez, M., and de la Fuente, M.A., 2008. Effect of a Diet Enriched in Whole Linseed and Sunflower Oil on Goat Milk Fatty Acid Composition and Conjugated Linoleic Acid Isomer Profile, Journal of Dairy Science, 91, 20-28

    CAS  PubMed  Google Scholar 

  • Luo, X., Ranade, K., Talker, R., Jallal, B., Shen, N., and Yao, Y., 2013. microRNA-mediated regulation of innate immune response in rheumatic diseases, Arthritis Research & Therapy, 15, 210

    CAS  Google Scholar 

  • Ma, J., Dempsey, A.A., Stamatiou, D., Marshall, K.W., and Liew, C.C., 2007. Identifying leukocyte gene expression patterns associated with plasma lipid levels in human subjects, Atherosclerosis, 191, 63-72

    CAS  PubMed  Google Scholar 

  • Maillard, V., Desmarchais, A., Durcin, M., Uzbekova, S., and Elis, S., 2018. Docosahexaenoic acid (DHA) effects on proliferation and steroidogenesis of bovine granulosa cells, Reproductive Biology and Endocrinology, 16, 40

    PubMed  Google Scholar 

  • Martinez, N.J., and Walhout, A.J., 2009. The interplay between transcription factors and microRNAs in genome-scale regulatory networks, Bioessays, 31, 435-445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meale, S.J., Romao, J.M., He, M.L., Chaves, A.V., McAllister, T.A., and Guan, L.L., 2014. Effect of diet on microRNA expression in ovine subcutaneous and visceral adipose tissues, Journal of Animal Science, 92, 3328-3337

    CAS  PubMed  Google Scholar 

  • Mishra, A., Chaudhary, A., and Sethi, S., 2004. Oxidized omega-3 fatty acids inhibit NF-kappaB activation via a PPARalpha-dependent pathway, Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1621-1627

    CAS  PubMed  Google Scholar 

  • Moallem, U.,  2018. Invited review: Roles of dietary n-3 fatty acids in performance, milk fat composition, and reproductive and immune systems in dairy cattle, Journal of Dairy Science, 101, 8641-8661

  • Monthe-Dreze, C., Penfield-Cyr, A., Smid, M.C., and Sen, S., 2018. Maternal Pre-Pregnancy Obesity Attenuates Response to Omega-3 Fatty Acids Supplementation During Pregnancy, Nutrients, 10,

  • Myhrstad, M.C., Ulven, S.M., Gunther, C.C., Ottestad, I., Holden, M., Ryeng, E., Borge, G.I., Kohler, A., Bronner, K.W., Thoresen, M., and Holven, K.B., 2014. Fish oil supplementation induces expression of genes related to cell cycle, endoplasmic reticulum stress and apoptosis in peripheral blood mononuclear cells: a transcriptomic approach, Journal of Internal Medicine, 276, 498-511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver, E., McGillicuddy, F.C., Harford, K.A., Reynolds, C.M., Phillips, C.M., Ferguson, J.F., and Roche, H.M., 2012. Docosahexaenoic acid attenuates macrophage-induced inflammation and improves insulin sensitivity in adipocytes-specific differential effects between LC n-3 PUFA, Journal of Nutritional Biochemistry, 23, 1192-1200

    CAS  PubMed  Google Scholar 

  • Pant, K., and Venugopal, S.K., 2017. Circulating microRNAs: Possible role as non-invasive diagnostic biomarkers in liver disease, Clinics and Research in Hepatology and Gastroenterology, 41, 370-377

    CAS  PubMed  Google Scholar 

  • Parrizas, M., and Novials, A., 2016. Circulating microRNAs as biomarkers for metabolic disease, Best Practice & Research: Clinical Endocrinology & Metabolism, 30, 591-601

    CAS  Google Scholar 

  • Povero, D., Eguchi, A., Li, H., Johnson, C.D., Papouchado, B.G., Wree, A., Messer, K., and Feldstein, A.E., 2014. Circulating extracellular vesicles with specific proteome and liver microRNAs are potential biomarkers for liver injury in experimental fatty liver disease, PloS One, 9, e113651

    PubMed  PubMed Central  Google Scholar 

  • Rayner, K.J., Suarez, Y., Davalos, A., Parathath, S., Fitzgerald, M.L., Tamehiro, N., Fisher, E.A., Moore, K.J., and Fernandez-Hernando, C., 2010. MiR-33 contributes to the regulation of cholesterol homeostasis, Science, 328, 1570-1573

    CAS  PubMed  PubMed Central  Google Scholar 

  • Romao, J.M., Jin, W., He, M., McAllister, T., and Guan, L.L., 2012. Altered microRNA expression in bovine subcutaneous and visceral adipose tissues from cattle under different diet, PloS One, 7, e40605

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rudkowska, I., Ponton, A., Jacques, H., Lavigne, C., Holub, B.J., Marette, A., and Vohl, M.C., 2011a. Effects of a supplementation of n-3 polyunsaturated fatty acids with or without fish gelatin on gene expression in peripheral blood mononuclear cells in obese, insulin-resistant subjects, J Nutrigenet Nutrigenomics, 4, 192-202

    CAS  PubMed  Google Scholar 

  • Rudkowska, I., Raymond, C., Ponton, A., Jacques, H., Lavigne, C., Holub, B.J., Marette, A., and Vohl, M.C., 2011b. Validation of the use of peripheral blood mononuclear cells as surrogate model for skeletal muscle tissue in nutrigenomic studies, OMICS: A Journal of Integrative Biology, 15, 1-7

    CAS  PubMed  Google Scholar 

  • Schlumbohm, C., and Harmeyer, J., 2008. Twin-pregnancy increases susceptibility of ewes to hypoglycaemic stress and pregnancy toxaemia, Research in Veterinary Science, 84, 286-299

    PubMed  Google Scholar 

  • Shi, C., Zhu, L., Chen, X., Gu, N., Chen, L., Zhu, L., Yang, L., Pang, L., Guo, X., Ji, C., and Zhang, C., 2014. IL-6 and TNF-alpha induced obesity-related inflammatory response through transcriptional regulation of miR-146b, Journal of Interferon and Cytokine Research, 34, 342-348

    CAS  PubMed  Google Scholar 

  • Suarez-Vega, A., Toral, P.G., Gutierrez-Gil, B., Hervas, G., Arranz, J.J., and Frutos, P., 2017. Elucidating fish oil-induced milk fat depression in dairy sheep: Milk somatic cell transcriptome analysis, Scientific Reports, 7, 45905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toral, P.G., Frutos, P., Hervas, G., Gomez-Cortes, P., Juarez, M., and de la Fuente, M.A., 2010. Changes in milk fatty acid profile and animal performance in response to fish oil supplementation, alone or in combination with sunflower oil, in dairy ewes, Journal of Dairy Science, 93, 1604-1615

    CAS  PubMed  Google Scholar 

  • Toral, P.G., Hervas, G., Belenguer, A., Carreno, D., and Frutos, P., 2017. mRNA abundance of genes involved in mammary lipogenesis during fish oil- or trans-10,cis-12 CLA-induced milk fat depression in dairy ewes, Journal of Dairy Science, 100, 3182-3192

    CAS  PubMed  Google Scholar 

  • Veshkini, A., Khadem, A.A., Mohammadi-Sangcheshmeh, A., Alamouti, A.A., Soleimani, M., and Gastal, E.L., 2016. Linolenic acid improves oocyte developmental competence and decreases apoptosis of in vitro-produced blastocysts in goat, Zygote, 24, 537-548

    CAS  PubMed  Google Scholar 

  • Vickers, K.C., Shoucri, B.M., Levin, M.G., Wu, H., Pearson, D.S., Osei-Hwedieh, D., Collins, F.S., Remaley, A.T., and Sethupathy, P., 2013. MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia, Hepatology, 57, 533-542

    CAS  PubMed  Google Scholar 

  • Wang, T., Li, M., Guan, J., Li, P., Wang, H., Guo, Y., Shuai, S., and Li, X., 2011. MicroRNAs miR-27a and miR-143 regulate porcine adipocyte lipid metabolism, International Journal of Molecular Sciences, 12, 7950-7959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Y., and Wang, J.K., 2016. The functional analysis of MicroRNAs involved in NF-kappaB signaling, European Review for Medical and Pharmacological Sciences, 20, 1764-1774

    CAS  PubMed  Google Scholar 

  • Yao, W., Li, J., Wang, J.J., Zhou, W., Wang, Q., Zhu, R., Wang, F., and Thacker, P., 2012. Effects of dietary ratio of n-6 to n-3 polyunsaturated fatty acids on immunoglobulins, cytokines, fatty acid composition, and performance of lactating sows and suckling piglets, J Anim Sci Biotechnol, 3, 43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yashodhara, B.M., Umakanth, S., Pappachan, J.M., Bhat, S.K., Kamath, R., and Choo, B.H., 2009. Omega-3 fatty acids: a comprehensive review of their role in health and disease, Postgrad Med J, 85, 84-90

    CAS  PubMed  Google Scholar 

  • Zachut, M., Arieli, A., Lehrer, H., Livshitz, L., Yakoby, S., and Moallem, U., 2010. Effects of increased supplementation of n-3 fatty acids to transition dairy cows on performance and fatty acid profile in plasma, adipose tissue, and milk fat, Journal of Dairy Science, 93, 5877-5889

    CAS  PubMed  Google Scholar 

  • Zheng, J., Zhang, Q., Mul, J.D., Yu, M., Xu, J., Qi, C., Wang, T., and Xiao, X., 2016. Maternal high-calorie diet is associated with altered hepatic microRNA expression and impaired metabolic health in offspring at weaning age, Endocrine, 54, 70-80

    CAS  PubMed  Google Scholar 

  • Zheng, Z., Ge, Y., Zhang, J., Xue, M., Li, Q., Lin, D., and Ma, W., 2015. PUFA diets alter the microRNA expression profiles in an inflammation rat model, Molecular Medicine Reports, 11, 4149-4157

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the members of their own laboratories for their helpful assistance.

Funding

This work was supported by a grant from the University of Tehran, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali A. Alamouti.

Ethics declarations

Ethical approval

The experiments in sheep were in accordance with the ethical standards of the stem cell research center and institutional and/or national research committee of the University of Tehran, Iran. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veshkini, A., Mohammadi-Sangcheshmeh, A., Alamouti, A.A. et al. Maternal supplementation with fish oil modulates inflammation-related MicroRNAs and genes in suckling lambs. Trop Anim Health Prod 52, 1561–1572 (2020). https://doi.org/10.1007/s11250-019-02157-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-019-02157-w

Keywords

Navigation