Skip to main content
Log in

Predicting early pregnancy in Egyptian buffalo cows via measuring uterine and luteal blood flows, and serum and saliva progesterone

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

Various methods are being employed to detect early pregnancy in domestic animals. This study aimed to predict early pregnancy in buffaloes via measuring the corpus luteum (CL) diameter, the luteal blood flow (LBF) area, the uterine blood flow (UBF) vascularization area, and progesterones in saliva and serum for non-pregnant (NPBs, N = 12) and pregnant (PBs, N = 12) buffaloes. The results revealed that the CL diameter and the luteal color blood flow blue and red (P = 0.0001) areas of the pregnant animals kept increasing from day 1 to day 35 of the gestation period, but it decreased in NPBs on day 21 after reaching a peak from ovulation to day 18. Interestingly, the UBF of the pregnant buffaloes (PBs) kept increasing (P = 0.0001) from ovulation to day 42. The difference of the CL diameter (P = 0.03) and the LBF color blue vascularization area (P = 0.002) between PBs and NPBs became clear from day 14 after ovulation, though the difference of UBF between PBs and NPBs became markedly obvious from day 7 after breeding. Both saliva (P = 0.001) and serum (P = 0.0001) progesterones of PBs continued increasing (P = 0.0001) from day 14 to day 35, but those of NPBs started decreasing (P = 0.0001) from day 14 and reached low values on day 21. Therefore, measuring saliva progesterone in addition to the high LBF (day 14) and UBF (day 7) of the pregnant buffaloes using a Doppler ultrasound could be applicable as noninvasive methods to detect early pregnancy and to improve reproductive management of buffaloes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdelnaby, E.A., Abo El-Maaty, A.M., Ragab, R.S.A., Seida, A.A., 2016. Assessment of Uterine vascular perfusion during the estrous cycle of mares in connection to circulating leptin and nitric oxide concentrations. Journal of Equine Veterinary Science 39, 2 5–32.

    Google Scholar 

  • Acosta, T.J., Hayashi, K.G., Ohtani, M., Miyamato, A., 2003. Local changes in blood flow within the preovulatory follicle wall and early corpus luteum in cows. Reproduction 125, 759–67.

    Article  CAS  Google Scholar 

  • Balhara, A.K., Gupta, M., Singh, S., Mohanty, A.K., Singh, I., 2013. Early pregnancy diagnosis in bovines, current status and future directions. Scientific World J. https://doi.org/10.1155/2013/958540

  • Beindorff, N., Nagai, K., Shirasuna, K., Herzog, K., Hoeffmann, K., Sasaki, M., Bollwein, H., Miyamoto, A., 2010. Vascular changes in the corpus luteum during early pregnancy in the cow. Journal of Reproduction and Development 56, 263–70.

    Article  CAS  Google Scholar 

  • Bird, I.M., Zhang, L., Magness, R.R., 2003. Possible mechanisms underlying pregnancy-induced changes in uterine artery endothelial function. American journal of physiology. Regulatory, integrative and comparative physiology 284, 245–58.

    Article  Google Scholar 

  • Bollwein, H., Lüttgenau, J., Herzog, K., 2013. Bovine luteal blood flow, basic mechanism and clinical relevance. Reproduction Fertility and Development 25, 71–9.

    Article  Google Scholar 

  • Choe J.K., Khan-Dawood, F.S., Dawood, M.Y., 1983. Progesterone and estradiol in saliva and plasma during the menstrual cycle. American Journal of Obstetrics and Gynecology. 147, 557–62.

    Article  CAS  Google Scholar 

  • Curran, S., Pierson, R.A., Ginther, O.J., 1986. Ultrasonographic appearance of the bovine conceptus from days 20 through 60. Journal of American Veterinary M medical Association 189, 1295–302.

    CAS  Google Scholar 

  • Evans, J.J., 1986. Progesterone in saliva does not parallel unbound progesterone in plasma. Clinical Chemistry 32, 542–4.

    CAS  PubMed  Google Scholar 

  • Fernandes, C.A.C., Viana, J.H.M., Palhao, M.P., 2015. Corpus luteum blood flow evaluation on Day 21 to improve the management of embryo recipient herds. Theriogenology 84, 237–41.

    Article  Google Scholar 

  • Gann, P.H., Giovanazzi, S., Van Horn, L.,Branning, A.,Chatterton, R.T. Jr., 2001. Saliva as a medium for investigating intra- and interindividual differences in sex hormone levels in premenopausal women. Cancer Epidemiolgical Biomarkers Preview 10, 59–64.

    CAS  Google Scholar 

  • Garcia-Ispierto, I., López-Gatius, F., 2012. Effects of GnRH or progesterone treatment on day 5 post-AI on plasma progesterone, luteal blood flow and leucocyte counts during the luteal phase in dairy cows. Reproduction in Domestic Animals 47, 224–9.

    Article  CAS  Google Scholar 

  • Guimarães, C.R., Oliveira, M.E., Rossi, J.R., Fernandes, C.A., Viana, J.H., Palhao, M.P., 2015. Corpus luteum blood flow evaluation on Day 21 to improve the management of embryo recipient herds. Theriogenology 84, 237–41.

    Article  Google Scholar 

  • Hanzen, C., Delsaux, B., 1987. Use of transrectal B-mode ultrasound imaging in bovine pregnancy diagnosis. Veterinary Record 121, 200–2.

    Article  CAS  Google Scholar 

  • Herzog, K., Voss, C., Kastelic, J.P., Beindorff, N., Paul, V., Niemann, H., Bollwein, H., 2011. Luteal blood flow increases during the first three weeks of pregnancy in lactating dairy cows. Theriogenology 75, 549–54.

    Article  CAS  Google Scholar 

  • Kanazawa, T., Seki, M., Ishiyama, K., Kubo, T., Kaneda, Y., Sakaguchi, M., Izaike, Y., Takahashi, T., 2016. Pregnancy prediction on the day of embryo transfer (Day 7) and Day 14 by measuring luteal blood flow in dairy cows. Theriogenology 86, 1436–44.

    Article  Google Scholar 

  • Karen, A.M., Darwish, S., Ramoun, A., Tawfeek, K., Nguyen, V.H., de Sousa N.M., Sulon, J., Szenci, O., Beckers, J.F., 2011. Accuracy of transrectal palpation for early pregnancy diagnosis in Egyptian buffaloes. Tropical Animal Health and Production 43,5–7.

    Article  Google Scholar 

  • Kastelic, J.P., Curran, S., Ginther, O.J., 1989. Accuracy of ultrasonography for pregnancy diagnosis on Days 10 to 22 in heifers. Theriogenology 31, 1813–20.

    Article  Google Scholar 

  • Kaya, S.,Kaçar, C., Polat, B., Çolak, A., Kaya, D., Gürcan, I.S., Bollwein, H., Aslan, S., 2017. Association of luteal blood flow with follicular size, serum estrogen and progesterone concentrations, and the inducibility of luteolysis by PGF2α in dairy cows. Theriogenology 87,167–72.

    Article  CAS  Google Scholar 

  • Kelley, D.E., Ibarbia, L., Daetz, R., Bittar, J.H., Risco, C.A., Santos, J.E., Ribeiro, E.S., Galvão, K.N., 2015. Combined use of progesterone inserts, ultrasonography, and GnRH to identify and resynchronize non-pregnant cows and heifers 21 days after timed artificial insemination. Theriogenology 85, 230–37.

    Article  Google Scholar 

  • Lequin, RM., Van den Boogaard, A., Vermeulen, J., Danhof, M., 1986. Progesterone in saliva, Pitalls and consequent implications for accuracy of determination. Clinical Chemistry 32, 831–4.

    CAS  PubMed  Google Scholar 

  • Lüttgenau, J., Bollwein, H., 2014. Evaluation of bovine luteal blood flow by using color Doppler ultrasonography. Reproductive biology 14, 103–9.

    Article  Google Scholar 

  • Matsui, M., Miyamoto, A., 2009. Evaluation of ovarian blood flow by colour Doppler ultrasound, practical use for reproductive management in the cow. The Veterinary Journal 181,232–40.

    Article  Google Scholar 

  • Miyamoto, A., Shirasuna, K., Wijayagunawardane, M.P., Watanabe, S., Hayashi, M., Yamamoto, D., Matsui, M., Acosta, T.J., 2005. Blood flow, a key regulatory component of corpus luteum function in the cow. Domestic Animal Endocrinology 29, 329–39.

    Article  CAS  Google Scholar 

  • Miyamoto, A., Shirasuna, K., Hayashi, K.G., Kamada, D., Awashima, C., Kaneko, E., Acosta, T.J., Matsui, M., 2006. A potential use of color ultrasound as a tool for reproductive management, new observations using color ultrasound scanning that were not possible with imaging only in black and white. The Journal Reproduction and Development. 52, 153–60.

    Article  Google Scholar 

  • Nation, D.P., Malmo, J., Davis, G.M., Macmillan, K.L. 2003. Accuracy of bovine pregnancy detection using transrectal ultrasonography at 28 to 35 days after insemination. Australian Veterinary Journal 81, 63–5.

    Article  CAS  Google Scholar 

  • Neglia, G., Restucci, B., Russo, M., Vecchio, D., Gasparrini, B., Prandi, A., Di Palo, R., D'Occhio, M.J., Campanile, G., 2015. Early development and function of the corpus luteum and relationship to pregnancy in the buffalo. Theriogenology 83,959–67.

    Article  Google Scholar 

  • Parkinson, T.J., Turvey, A., Jenner, L.J., 1994. A morphometric analysis of the corpus luteum of the cow during the estrous cycle and early pregnancy. Theriogenology 41, 1115–26.

    Article  CAS  Google Scholar 

  • Pugliesi, G., Miagawa, B.T., Paiva, Y.N., França, M.R., Silva, L.A., Binelli, M., 2014. Conceptus-induced changes in the gene expression of blood immune cells and the ultrasound-accessed luteal function in beef cattle, how early can we detect pregnancy? Biology of Reproduction 91, 1–12.

    Article  Google Scholar 

  • Sasser, R.G., Ruder, C.A., 1987. Detection of early pregnancy in domestic ruminants. Journal of Reproduction and Fertility Suppl 34, 261–71.

    CAS  Google Scholar 

  • Scully, S.,Evans, A.C., Carter, F., Duffy, P., Lonergan, P., Crowe, M.A., 2015. Ultrasound monitoring of blood flow and echotexture of the corpus luteum and uterus during early pregnancy of beef heifers. Theriogenology 83, 449–58.

    Article  CAS  Google Scholar 

  • Selvaraju, S., Raghavendra, B.S., Subramani, T.S., Priyadharsini, R., Reddy, I.J., Ravindra, J.P., 2010. Changes in luteal cells distribution, apoptotic rate, lipid peroxidation levels and antioxidant enzyme activities in buffalo (Bubalus bubalis) corpus luteum. Animal Reproduction Science 120, 39–46.

    Article  CAS  Google Scholar 

  • Sharma, R.K., Singh, J.K., Phulia, S.K., Khanna, S., Singh, I., 2011. Fetal sex determination with ultrasonography in buffaloes. Indian Veterinary Journal 88, 105–107.

    Google Scholar 

  • Silva, L.A., Gastal, E.L., Beg, M.A., Ginther, O.J., 2005. Changes in vascular perfusion of the endometrium in association with changes in location of the embryonic vesicle in mares. Biology of Reproduction 72, 755–61.

    Article  CAS  Google Scholar 

  • Siqueira, L.G.B., Areas, V.S., Ghetti, A.M., Fonseca, J.F., Palhao, M.P., Fernandes, C.A.C., Viana, J.H.M., 2013. Color Doppler flow imaging for the early detection of non pregnant cattle at 20 days after timed artificial insemination. Journal of Dairy Sciences 96, 6461–72.

    Article  CAS  Google Scholar 

  • SPSS. Statistical Package for the Social Sciences (SPSS® Statistical Software Version 16 Inc., Chicago, IL for Windows), 2007.

  • Utt, M.D., Johnson III, G.L., Beal, W.E., 2009. The evaluation of corpus luteum blood flow using color-flow Doppler ultrasound for early pregnancy diagnosis in bovine embryo recipients. Theriogenology 71,707–15.

    Article  CAS  Google Scholar 

  • Varughese, E.E., Brar, P.S., Dhindsa, S.S., 2013. Uterine blood flow during various stages of pregnancy in dairy buffaloes using transrectal Doppler ultrasonography. Animal Reproduction Science 140, 34–9

    Article  CAS  Google Scholar 

  • Volkery, J., Wittek, T., Sobiraj, A., Gottschalk, J., Einspanier, A., 2010. Progesterone and pregnanediol-glucuronid concentrations in saliva, milk and urine of female alpacas and their application in pregnancy diagnosis. Berliner und Münchener tierärztliche Wochenschrift 123, 500–5.

    CAS  PubMed  Google Scholar 

  • Volkery, J., Gottschalk, J., Sobiraj, A., Wittek, T., Einspanier, A., 2012. Progesterone, pregnanediol-3-glucuronide, relaxin and oestrone sulphate concentrations in saliva, milk and urine of female alpacas (Vicugna pacos) and their application in pregnancy diagnosis. Veterinary Record 171, 195.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Department of Animal Production, Faculty of Agriculture, Al-Azhar University, for allowing access, sampling, and examination of their buffaloes belonged to their research farm along the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amal M. Abo El-Maaty.

Ethics declarations

Statement of animal rights

This study was performed in accordance with the Use and Animal Care Guidelines of the National Research Centre, Cairo University, and Al-Azhar University.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lasheen, M.E., Badr, H.M., Kandiel, M.M.M. et al. Predicting early pregnancy in Egyptian buffalo cows via measuring uterine and luteal blood flows, and serum and saliva progesterone. Trop Anim Health Prod 50, 137–142 (2018). https://doi.org/10.1007/s11250-017-1413-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-017-1413-6

Keywords

Navigation