Skip to main content

Advertisement

Log in

Bacterial fermentation in the gastrointestinal tract of non-ruminants: Influence of fermented feeds and fermentable carbohydrates

  • Original Paper
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

The search for alternatives to in-feed antibiotics in animal nutrition has highlighted the role dietary modulation can play in improving gut health. Current antibiotic replacement strategies have involved the use of microbes beneficial to health (probiotics) or fermentable carbohydrates (prebiotics) or both (synbiotics). The present review recognises the contribution of fermented feeds and fermentable carbohydrates in improving the gut environment in non-ruminants. It proposes the screening of probiotic bacteria for the production of fermented feeds and supplementation of these feeds with fermentable carbohydrates prior to feeding animals. It is suggested that the term ‘fermbiotics’ should be used to describe this intervention strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apata, D.F., 2008. Growth performance, nutrient digestibility and immune response of broiler chicks fed diets supplemented with a culture of Lactobacillus bulgaricus. Journal of the Science of Food and Agriculture 88, 1253–1258. doi:10.1002/jsfa.3214

    CAS  Google Scholar 

  • Armstrong, E.F., Eastwood, M.A., Edwards, C.A., Brydon, W.G., 1992. The effect of weaning diet on the subsequent colonic metabolism of dietary fibre in the adult rat. British Journal of Nutrition 68, 741–751. doi:10.1079/BJN19920130

    CAS  PubMed  Google Scholar 

  • Bach Knudsen, K.E., 1997. Carbohydrates and lignin contents of plant materials used in animal feeding. Animal Feed Science and Technology 67, 319–338.

    CAS  Google Scholar 

  • Bach Knudsen, K.E., 2001. The nutritional significance of “dietary fibre” analysis. Animal Feed Science and Technology 90, 3–20. doi:10.1016/S0377-8401(01)00193-6

    CAS  Google Scholar 

  • Barnes, E.M., Impey, C.S., Cooper, D.M., 1980. Manipulation of the crop and intestinal flora of the newly hatched chick. American Journal of Clinical Nutrition 33, S2426–S2433.

    Google Scholar 

  • Bauer, E., Williams, B.A., Verstegen, M.W.A., Mossenthin, R., 2006. Fermentable carbohydrates: potential dietar modulators of intestinal physiology, microbiology and immunity in pigs In: Mosenthin, R., Zentek, J., Zebrowska, T. (Ed.), Biology of Growing Animal Series, Elsevier Limited, Edinburgh, U. K., pp. 33–63.

    Google Scholar 

  • Blaut, M., Collins, M.D., Welling, G.W., Dore, J., van Loo, J., de Vos, W., 2002. Molecular biological methods for studying the gut microbiota: the EU human gut flora project. British Journal of Nutrition 97, S203–S211. doi:10.1079/BJN/2002539

    Google Scholar 

  • Boesen, H.T., Jensen, T.K., Schmidt, A.S., Jensen, B.B., Jensen, S.M., Moller, K., 2004. The influence of diet on Lawsonia intracellularis colonization in pigs upon experimental challenge. Veterinary Microbiology 103, 35–45. doi:10.1016/j.vetmic.2004.06.008

    PubMed  Google Scholar 

  • Brooks, P.H., 2008. Fermented Liquid Feed for Pigs, CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, http://www.cababstractsplus.org/cabreviews/, pp. 1–18.

  • Brooks, P.H., Beal, J.D., Niven, S.J., 2003a. Liquid feeding of pigs I. Potential for reducing environmental impact and improving productivity., Review paper presented at the coneference on Effect of genetic and non-genetic factors on carcass and meat quality of pigs, Siedlce, Poland, pp. 7–22

  • Brooks, P.H., Beal, J.D., Niven, S.J., Demeckova, V., 2003b. Liquid feeding of pigs: II Potential for improving pig health and food safety., Review paper presented at the coneference on Effect of genetic and non-genetic factors on carcass and meat quality of pigs., Siedlce, Poland, pp. 23–40.

  • Brooks, P.H., Moran, C.A., Beal, J.D., Demeckova, V., Campbell, A., 2001. Liquid feeding for young piglet, In: Varley, M.A., Wiseman, J. (Eds.), The Weaner Pig, Nutrition and Management, CABI Publishing, Oxon, UK, pp. 153–178.

    Google Scholar 

  • Cartman, S.T., La Ragione, R.M., Woodward, M.J., 2007. Bacterial spore formers as probiotics for poultry. Food Science and Technology Bulletin: Functional Foods 4, 21–30. doi:10.1616/1476-2137.14897

    Google Scholar 

  • Castillo, M., Martín-Orúe, S.M., Manzanilla, E.G., Badiola, I., Martín, M., Gasa, J., 2006. Quantification of total bacteria, enterobacteria and lactobacilli populations in pig digesta by real-time PCR. Veterinary Microbiology 114, 165–170. doi:10.1016/j.vetmic.2005.11.055

    CAS  PubMed  Google Scholar 

  • Collins, M.D., Gibson, G.R., 1999. Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. American Journal of Clinical Nutrition 69, S1052–S1057.

    Google Scholar 

  • Crittenden, R.G., Playne, M.J., 1996. Production, properties and applications of food-grade oligosaccharides. Trends in Food Science & Technology 7, 353–361. doi:10.1016/S0924-2244(96)10038-8

    CAS  Google Scholar 

  • Cummings, J.H., 1983. Fermentation in the human large intestine: evidence and implications for health. Lancet i, 1206–1209. doi:10.1016/S0140-6736(83)92478-9

  • Dalloul, R.A., Lillehoj, H.S., 2006. Poultry coccidiosis: recent advancements in control measures and vaccine development. Vaccines 5, 143–163. doi:10.1586/14760584.5.1.143

    CAS  Google Scholar 

  • Dalloul, R.A., Lillehoj, H.S., Shellem, T.A., Doerr, J.A., 2003. Enhanced mucosal immunity against Eimeria acervulina in broilers fed a Lactobacillus-based probiotic. Poultry Science 82, 62–66.

    CAS  PubMed  Google Scholar 

  • de los Santos, F.S., Donoghue, A.M., Venkitanarayanan, K., Dirain, M.L., Reyes-Herrera, I., Blore, P.J., Donoghue, D.J., 2008. Caprylic acid supplemented in feed reduces enteric Campylobacter jejuni colonization in ten-day-old broiler chickens. Poultry Science 87, 800–804. doi:10.3382/ps.2007-00280

    Google Scholar 

  • De Preter, V., Cloetens, L., Houben, E., Rutgeerts, P., Verbeke, K., 2006a. Effect of dietary interventions with different pre- and probiotics on intestinal bacterial enzyme activities. Reproduction, Nutrition and Development 46, S91 (Abstract).

  • De Preter, V., Cloetens, L., Rutgeerts, P., Verbeke, K., 2006b. Effect of short- and long-term dietary intake of oligofructose enriched inulin on the colonic fate of ammonia in healthy volunteers Reproduction, Nutrition and Development 46, S91–S92 (Abstract).

  • Demeckova, V., Kelly, D., Coutts, A.G.P., Brooks, P.H., Campbell, A., 2002. The effect of fermented liquid feeding on the faecal microbiology and colostrum quality of farrowing sows. International Journal of Food Microbiology 79, 85–97. doi:10.1016/S0168-1605(02)00182-4

    CAS  PubMed  Google Scholar 

  • Dibner, J.J., Richards, J.D., 2005. Antibiotic Growth Promoters in Agriculture: History and Mode of Action. Poultry Science 84, 634–643.

    CAS  PubMed  Google Scholar 

  • Dong, G., Zhou, A., Yang, F., Chen, K., Wang, K., Dao, D., 1996. Effect of dietary protein levels on bacterial breakdown of protein in the large intestine, and diarrhoea in early piglets. Acta Veterinaria et Zootechnica Sinica 27, 293–302.

    Google Scholar 

  • Donoghue, A.M., Farnell, M.B., Cole, K., Donoghue, D.J., 2006. Mechanisms of pathogen control in the avian gastrointestinal tract., In: Perry, G.C. (Ed.), Avian Gut Function in health and Disease, CABI International, Wallingford, U.K., pp. 138–155.

    Google Scholar 

  • Doyle, E.M., 2001. Alternatives to antibiotic use for growth promotion in animal husbandry, Food Research Institue Report funded by National Pork Producers Council, University of Wisconsin-Madison, Wisconsin-Madison, USA, p. 15.

    Google Scholar 

  • Engberg, R.M., Johansen, N.F., Jensen, B.B., 2006. Fermented feed for laying hens. Reproduction, Nutrition and Development 46, S93 (Abstract).

  • Englyst, H.N., Kingman, S.M., Cumming, J.H., 1992. Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition 46, 33–50.

    Google Scholar 

  • Ewing, W.N., Cole, D.J.A., 1994. The Living Gut: An introduction to Micro-organisms in Nutrition. Dungannon, Ireland Context.

    Google Scholar 

  • Fasano, A., Shea-Donohoue, T., 2005. Mechanisms of Disease: the role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nature Clinical Practice,Gastroenterology & Hepatology 2, 416–422. doi:10.1038/ncpgasthep0259

    CAS  Google Scholar 

  • Fernandez, F., Hinton, M., Van Gils, B., 2000a. Evaluation of the effect of mannan-oligosaccharides on the competitive exclusion of Salmonella Enteritidis colonization in broiler chicks. Avian Pathology 29, 575–581. doi:10.1080/03079450020016823

    CAS  PubMed  Google Scholar 

  • Fernandez, F., Hinton, M., Van Gils, B., 2002. Dietary mannan-oligosaccharides and their effect on chicken caecal microflora in relation to Salmonella Enteritidis colonization. Avian Pathology 31, 49–58. doi:10.1080/03079450120106000

    CAS  PubMed  Google Scholar 

  • Fernandez, F., Sharma, R., Hinton, M., Bedford, M.R., 2000b. Diet influences the colonisation of Campylobacter jejuni and distribution of mucin carbohydrates in the chick intestinal tract. Cell. Mol. Life Sci. 57, 1793–1801. doi:10.1007/PL00000659

    CAS  PubMed  Google Scholar 

  • Forbes, J.M., 2003. Wet foods for poultry. Avian Poult. Biol. Rev. 14, 175–193. doi:10.3184/147020603783637481

    Google Scholar 

  • Frooks, L.J., Gibson, R.G., 2002. Probiotics as modulators of the gut flora. British Journal of Nutrition 88, S39–S49. doi:10.1079/BJN2002628

    Google Scholar 

  • Fukunaga, T.M., Sasaki, Y., Araki, T., Okamoto, T., Yasuoka, T., Tsujikawa, Fujiyama, Y., Bamba, T., 2003. Effects of the soluble fibre pectin on intestinal cell proliferation, fecal short chain fatty acid production and microbial population. Digestion 67, 42–49. doi:10.1159/000069705

    CAS  PubMed  Google Scholar 

  • Fuller, R., 1989. A review: probiotics in man and animals. Journal of Applied Bacteriology 66, 365–378.

    CAS  PubMed  Google Scholar 

  • Geary, T.M., Brooks, P.H., Morgan, D.T., Campbell, A., Russell, P.J., 1996. Performance of weaner pigs fed ad libitum with liquid feed at different dry matter concentrations. Journal of the Science of Food and Agriculture 72, 17–24. doi:10.1002/(SICI)1097-0010(199609)72:1<17::AID-JSFA598>3.0.CO;2-3

    CAS  Google Scholar 

  • Gibson, G.R., 1998. Dietary modulation of the human gut microflora using prebiotics. British Journal of Nutrition 80, S209–S212.

    CAS  PubMed  Google Scholar 

  • Gibson, G.R., Fuller, R., 2000. Aspects of In Vitro and In Vivo Research Approaches Directed Toward Identifying Probiotics and Prebiotics for Human Use. Journal of Nutrition 130, 391S–395S.

    CAS  PubMed  Google Scholar 

  • Gibson, G.R., Roberfroid, M.B., 1995. Dietary modulation of the human colonic microbiota-Introducing the concept of prebiotics. Journal of Nutrition 125, 1401–1412.

    CAS  PubMed  Google Scholar 

  • Gidenne, T., Licois, D., 2005. Effect of high fibre intake on resistance of the growing rabbit to an experimental inoculation with an enteropathogenic strain of Escherichia coli. Animal Science 80, 281–288. doi:10.1079/ASC41570281

    CAS  Google Scholar 

  • Gidenne, T., Mirabito, L., Jehl, N., Perez, J.M., Arveux, P., Bourdillon, A., Briens, C., Durperray, J., 2004. Impact of replacing starch by digestible fibre, at two levels of lignocellulose, on digestion, growth and digestive health of the rabbit. Animal Science 78, 389–398.

    CAS  Google Scholar 

  • Gidenne, T., Pinheiro, V., Falcao e Cunha, L., 2000. A comprehensive approach of the rabbit digestion: consequences of a reduction in dietary fibre supply. Livestock Production Science 64, 225–237. doi:10.1016/S0301-6226(99)00141-4

    Google Scholar 

  • Gill, H.S., Rutherfurd, K.J., 2001. Viability and dose-response studies on the effects of the immunoenhancing lactic acid bacterium Lactobacillus rhamnosus in mice. British Journal of Nutrition 86, 285–289. doi:10.1079/BJN2001402

    CAS  PubMed  Google Scholar 

  • Guan, L.L., Hagen, K.E., Tannock, G.W., Korver, D.R., Fasenko, G.M., Allison, G.E., 2003. Detection and Identification of Lactobacillus Species in Crops of Broilers of Different Ages by Using PCR-Denaturing Gradient Gel Electrophoresis and Amplified Ribosomal DNA Restriction Analysis. Appl. Environ. Microbiol. 69, 6750–6757. doi:10.1128/AEM.69.11.6750-6757.2003

    CAS  PubMed  Google Scholar 

  • Hampson, D.J., Phillips, N.D., Pluske, J.R., 2002. Dietary enzyme and zinc bacitracin reduce colonisation of layer hens by the intestinal spirochaete Brachyspira intermedia. Veterinary Microbiology 86, 351–360. doi:10.1016/S0378-1135(02)00025-1

    CAS  PubMed  Google Scholar 

  • Harada, E., Niiyama, M., Syuto, B., 1986. Comparison of pancreatic exocrine secretion via endogenous secretion by intestinal infusion of hydrochloric acid in anesthesized piglets. Japanese Journal of Physiology 36, 843–858. doi:10.2170/jjphysiol.36.843

    CAS  PubMed  Google Scholar 

  • Harvey, R.B., Anderson, R.C., Genovese, K.J., Callaway, T.R., Nisbet, D.J., 2005. Use of competitive exclusion to control enterotoxigenic strains of Escherichia coli in weaned pigs. Journal of Animal Science 83, E44–47.

    Google Scholar 

  • Heneghan, J.B., 1988. Alimentary tract physiology: interactions between the host and its microbial flora., In: Rowland, I.R. (Ed.), Role of the Gut Flora in Toxicity and Cancer, Academic Press, London, pp. 39–78.

    Google Scholar 

  • Hentges, D.J., 1992. Gut flora and disease resistance, In: Fuller, R. (Ed.), Probiotics:The Scientific Basis, Chapman and Hall, London, pp. 51–67.

    Google Scholar 

  • Heres, L., Engel, B., Urlings, H.A.P., Wagenaar, J.A., van Knapen, F., 2004. Effect of acidified feed on susceptibility of broiler chickens to intestinal infection by Campylobacter and Salmonella. Veterinary Microbiology 99, 259–267. doi:10.1016/j.vetmic.2003.12.008

    CAS  PubMed  Google Scholar 

  • Heres, L., Engel, B., Van Knapen, F., Wagenaar, J.A., Urlings, B.A.P., 2003a. Effect of fermented feed on the susceptibility for Campylobacter jejuni colonisation in broiler chickens with and without concurrent inoculation of Salmonella enteritidis. International Journal of Food Microbiology 87, 75–86. doi:10.1016/S0168-1605(03)00055-2

    PubMed  Google Scholar 

  • Heres, L., Wagenaar, J.A., Van Knapen, F., Urlings, B.A.P., 2003b. Passage of Salmonella through the crop and gizzard of broiler chickens fed with fermented liquid feed. Avian Pathology 32, 173–181. doi:10.1080/0307945021000071597

    PubMed  Google Scholar 

  • Hogberg, A., Lindberg, J.E., 2004. Influence of cereal non-starch polysaccharides and enzyme supplementation on digestion site and gut environment in weaned piglets. Animal Feed Science and Technology 116, 113–128. doi:10.1016/j.anifeedsci.2004.03.010

    Google Scholar 

  • Hojberg, O., Canibe, N., Knudsen, B., Jensen, B.B., 2003. Potential Rates of Fermentation in Digesta from the Gastrointestinal Tract of Pigs: Effect of Feeding Fermented Liquid Feed. Applied and Environmental Microbiology 69, 408–418. doi:10.1128/AEM.69.1.408-418.2003

    CAS  PubMed  Google Scholar 

  • Hurst, D., 2002. The influence of liquid feeding on gastrointestinal adaptation, growth and performance in the growing pig, Imperial College at Wye, University of London, London, U. K., p. 295.

    Google Scholar 

  • Hurst, D., Lean, I.J., Hall, A.D., 2000a. The effects of liquid feed on the small intestine mucosa and performance of finishing pigs at different water to feed ratios, Proceedings of the British Society of Animal Science, British society of Animal Science, Scarborough, p. 161.

    Google Scholar 

  • Hurst, D., Lean, I.J., Hall, A.D., 2000b. The effects of liquid feed on the small intestine mucosa and performance of piglets at 28 days postweaning., Proceedings of the British Society of Animal Science, British Society of Animal Science, Scaborough, p. 162.

    Google Scholar 

  • Iji, P.A., Saki, A.A., Tivey, D.R., 2001. Intestinal structure and function of broiler chickens on diets supplemented with a mannan oligosaccharide. Journal of the Science of Food and Agriculture 81, 1186–1192. doi:10.1002/jsfa.925

    CAS  Google Scholar 

  • Iyayi, E.A., Kluth, H., Rodehutscord, M., 2007. Effect of heat treatment on antinutrients and precaecal crude protein digestibility in broilers of four tropical crop seeds. International Journal of Food Science and Technology 43, 610–616. doi:10.1111/j.1365-2621.2007.01495.x

    Google Scholar 

  • Jozefiak, D., Rutkowski, A., Martin, S.A., 2004. Carbohydrate fermentation in the avian ceca: a review. Animal Feed Science and Technology 113, 1–15. doi:10.1016/j.anifeedsci.2003.09.007

    CAS  Google Scholar 

  • Khaksefidi, A., Rahimi, S., 2005. Effect of probiotic inclusion in the diet of broiler chickens on performance, feed efficiency and carcass quality. Asian-Australasian Journal of Animal Sciences 18, 1153–1156.

    CAS  Google Scholar 

  • Konstantinov, S.R., Awati, A., Smidt, H., Williams, B.A., Akkermans, A.D.L., de Vos, W.M., 2004. Specific Response of a Novel and Abundant Lactobacillus amylovorus-Like Phylotype to Dietary Prebiotics in the Guts of Weaning Piglets. Applied and Environmental Microbiology 70, 3821–3830. doi:10.1128/AEM.70.7.3821-3830.2004

    CAS  PubMed  Google Scholar 

  • La Ragione, R.M., Casula, G., Cutting, S.M., Woodward, M.J., 2001. Bacillus subtilis spores competitively exclude Escherichia coli O78:K80 in poultry. Veterinary Microbiology 79, 133–142. doi:10.1016/S0378-1135(00)00350-3

    PubMed  Google Scholar 

  • La Ragione, R.M., Narbad, A., Gasson, M.J., Woodward, M.J., 2004. In vivo characterisation of Lactobacillus johnsonii FI 9785 for use as adefined competitive exclusion agent against bacterail pathogens in poultry. Letters in Applied Microbiology 38, 197–205. doi:10.1111/j.1472-765X.2004.01474.x

    PubMed  Google Scholar 

  • La Ragione, R.M., Woodward, M.J., 2003. Competitive exclusion by Bacillus subtilis spores of Salmonella enterica serotype Enteritidis and Clostridium perfringens in young chickens. Veterinary Microbiology 94, 245–256. doi:10.1016/S0378-1135(03)00077-4

    PubMed  Google Scholar 

  • Lallès, J.-P., Bosi, P., Smidt, H., Stokes, C.R., 2007. Weaning -A challenge to gut physiologists. Livestock Science 108, 82–93. doi:10.1016/j.livsci.2007.01.091

    Google Scholar 

  • Lan, Y., Verstegen, M.W.A., Tamminga, S., Williams, B.A., 2005a. The role of the commensal gut microbial community in broiler chickens. World’s Poultry Science Journal 61, 95–104. doi:10.1079/WPS200445

    Google Scholar 

  • Lan, Y., Williams, B.A., Tamminga, S., Boer, H., Akkermans, A., Erdi, G., Verstegen, M.W.A., 2005b. In vitro fermentation kinetics of some non-digestible carbohydrates by the caecal microbial community of broilers. Animal Feed Science and Technology 123–124, 687–702. doi:10.1016/j.anifeedsci.2005.04.027

  • Larsen, N., Nissen, P., Willats, W.G.T., 2007. The effect of calcium ions on adhesion and competitive exclusion of Lactobacillus sp. and E. coli O138. International Journal of Food Microbiology 114, 113–119. doi:10.1016/j.ijfoodmicro.2006.10.033

    CAS  Google Scholar 

  • Le Blay, G., Blottiere, H.M., Ferrier, L., Le Foli, E.C., Bonnet, J.P., Galmiche, Cherbut, C., 2000. Short-chain fatty acids induce cytoskeletal and extracellular protein modifications associated with modulation of proliferation on primary culture of rat intestinal smooth muscle cells. Digestive Disease Science 45, 1623–1630. doi:10.1023/A:1005529414765

    Google Scholar 

  • Lee, S., Lillehoj, H.S., Park, D.W., Hong, Y.H., Lin, J.J., 2007a. Effects of Pediococcus- and Saccharomyces-based probiotic (MitoMax®) on coccidiosis in broiler chickens. Comparative Immunology, Microbiology and Infectious Diseases 30, 261–268. doi:10.1016/j.cimid.2007.02.002

    PubMed  Google Scholar 

  • Lee, S.H., Lillehoj, H., Park, D.W., Dalloul, R., Hong, Y.H., Lin, J., 2006. Influence of pediococcus-based probiotic on coccidiosis in broiler chickens. Poultry Science 85, 122–123.

    Google Scholar 

  • Lee, S.H., Lillehoj, H.S., Dalloul, R.A., Park, D.W., Hong, Y.H., Lin, J.J., 2007b. Influence of Pediococcus-based probiotic on coccidiosis in broiler chickens. Poultry Science 86, 63–66.

    CAS  PubMed  Google Scholar 

  • Li, M., Gong, J., Cottrill, M., Yu, H., de Lange, C., Burton, J., Topp, E., 2003. Evaluation of QIAamp (R) DNA Stool Mini Kit for ecological studies of gut microbiota. Journal of Microbiological Methods 54, 13–20. doi:10.1016/S0167-7012(02)00260-9

    CAS  PubMed  Google Scholar 

  • Lu, J., Idris, U., Harmon, B., Hofacre, C., Maurer, J.J., Lee, M.D., 2003. Diversity and Succession of the Intestinal Bacterial Community of the Maturing Broiler Chicken. Applied and Environmental Microbiology 69, 6816–6824. doi:10.1128/AEM.69.11.6816-6824.2003

    CAS  PubMed  Google Scholar 

  • Macfarlane, G.T., Steed, H., Macfarlane, S., 2008. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. Journal of Applied Microbiology 104, 305–344.

    CAS  PubMed  Google Scholar 

  • Marounek, M., Suchorska, O., Savka, O., 1999. Effect of substrate and feed antibiotics on in vitro production of volatile fatty acids and methane in caecal contents of chickens. Animal Feed Science and Technology 80, 223–230. doi:10.1016/S0377-8401(99)00065-6

    CAS  Google Scholar 

  • May, T., Mackie, R.I., Fahey, G.C., Cremin, J.C., Garleb, K.A., 1994. Effect of fiber source on short-chain fatty acid production and on the growth and toxin production by Clostridium difficile. Scandinavian Journal of Gastroenterology 29, 916–922. doi:10.3109/00365529409094863

    CAS  PubMed  Google Scholar 

  • McCartney, L.A., 2002. Application of molecular biological methods for studying probiotics and gut microflora. British Journal of Nutrition 88, S29–S37. doi:10.1079/BJN2002627

    CAS  PubMed  Google Scholar 

  • McHan, F., Shotts, E.B., 1992. Effect of feeding selected short-chain fatty acids on the in vivo attachment of Salmonella typhimurium in chick ceca. Avian Diseases 36, 139–142. doi:10.2307/1591728

    CAS  PubMed  Google Scholar 

  • McHan, F., Shotts, E.B., 1993. Effect of short-chain fatty acids on the growth of Salmonella typhimurium in an in vitro system. Avian Diseases 37, 396–398. doi:10.2307/1591664

    CAS  PubMed  Google Scholar 

  • Missotten, J.A.M., Goris, J., Michiels, J., Van Coillie, E., Herman, L., De Smet, S., Dierick, N.A., Heyndrickx, M., 2008. Screening of isolated lactic acid bacteria as potential beneficial strains for fermented liquid pig feed production. Animal Feed Science and Technology In Press, Corrected Proof, 17p.

  • Missotten, J.A.M., Michiels, J., Goris, J., Herman, L., Heyndrickx, M., De Smet, S., Dierick, N.A., 2007. Screening of two probiotic products for use in fermented liquid feed. Livestock Science 108, 232–235. doi:10.1016/j.livsci.2007.01.078

    Google Scholar 

  • Montagne, L., Pluske, J.R., Hampson, D.J., 2003. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Animal Feed Science and Technology 108, 95–117. doi:10.1016/S0377-8401(03)00163-9

    Google Scholar 

  • Moura, P., Simoes, F., Marques, S., Alves, L., Girio, F., Freire, J.P.B., Esteves, M.P., 2006. Molecular analysis of the intestinal microbiota of weaning piglets fed with diets supplemented with xylo-oligosaccahrides. Reproduction, Nutrition and Development 46, S107 (Abstract).

  • Mukhodhyay, N., Ray, A.K., 1999. Effect of fermentation on the nutritive value of sesame seed meal in the diets for rohu, Labeo rohita (Hamilton), fingerlings. Aquaculture Nutrition 5, 229–236. doi:10.1046/j.1365-2095.1999.00101.x

    Google Scholar 

  • Niba, A.T., Yajima, K., Kudi, A.C., Beal, J.D., Brooks, P.H., 2008. Effect of concentration of phenolic compounds of two sorghum varieties on fermentation of sorghum with lactic acid bacteria for inclusion in poultry diets, In: BSAS (Ed.), Proceedings of the British Society of Animal Science, Cambridge University Press, Scarborough, U. K., p. 80.

    Google Scholar 

  • Nyachoti, C.M., Omogbenigun, F.O., Rademacher, M., Blank, G., 2006. Performance responses and indicators of gastrointestinal health in early-weaned pigs fed low-protein amino acid-supplemented diets. Journal of Animal Science 84, 125–134. doi:10.2527/jas.2004-467

    CAS  PubMed  Google Scholar 

  • Prohaska, L., 1986. Antibacterial mechanism of volatile fatty acids in the intestinal tract of pigs against Escherichia coli. Zentralbl. Veterinarmed., Reihe B 33, 166–173.

    Google Scholar 

  • Rada, V., Nevoral, J., Trojanová, I., Tománková, E., Smehilová, M., Killer, J., 2008. Growth of infant faecal bifidobacteria and clostridia on prebiotic oligosaccharides in in vitro conditions. Anaerobe 14, 205–208. doi:10.1016/j.anaerobe.2008.05.003

    CAS  PubMed  Google Scholar 

  • Rafter, J., 2002. Lactic acid bacteria and cancer: mechanistic perspective. British Journal of Nutrition 88, S89–S94. doi:10.1079/BJN2002633

    CAS  PubMed  Google Scholar 

  • Rama Rao, S.V., Raju, M.V.L.N., Reddy, M.R., 2007. Performance of broiler chicks fed high levels of cholecalciferol in diets containing sub-optimal levels of calcium and non-phytate phosphorus. Animal Feed Science and Technology 134, 77–88. doi:10.1016/j.anifeedsci.2006.05.006

    Google Scholar 

  • Ramakrishna, B.S., Nance, S.H., Roberts-Thomson, I.C., Roediger, W.E.W., 1990. The effects of enterotoxins and short chain fatty acids on water and electrolyte fluxes in ileal and colonic loops in vivo in the rat. Digestion 45, 93–101. doi:10.1159/000200229

    CAS  PubMed  Google Scholar 

  • Rastall, R.A., Maitin, V., 2002. Prebiotics and synbiotics: towards the next generation. Current Opinion in Biotechnology 13, 490–496. doi:10.1016/S0958-1669(02)00365-8

    CAS  PubMed  Google Scholar 

  • Refstie, S., Sahlstrom, S., Brathen, E., Baeverfjord, G., Krogedal, P., 2005. Lactic acid fermentation eliminates indigestible carbohydrates and antinutritional factors in soybean meal for Atlantic salmon (Salmo salar). Aquaculture 246, 331–345. doi:10.1016/j.aquaculture.2005.01.001

    CAS  Google Scholar 

  • Rehman, H., Bohm, J., Zentek, J., 2008a. Effects of differentially fermentable carbohydrates on the microbial fermentation profile of the gastrointestinal tract of broilers. J. Anim. Physiol. Anim. Nutr. 92, 471–480. doi:10.1111/j.1439-0396.2007.00736.x

    CAS  Google Scholar 

  • Rehman, H., Hellweg, P., Taras, D., Zentek, J., 2008b. Effects of dietary inulin on the intestinal short chain fatty acids and microbial ecology in broiler chickens as revealed by denaturing gradient gel electrophoresis. Poultry Science 87, 783–789. doi:10.3382/ps.2007-00271

    CAS  PubMed  Google Scholar 

  • Reid, G., 2008. Probiotics and prebiotics - Progress and challenges. International Dairy Journal 18, 969–975. doi:10.1016/j.idairyj.2007.11.025

    CAS  Google Scholar 

  • Richards, J.D., Gong, J., de Lange, C.F.M., 2005. The gastrointestinal microbiota and its role in monogastric nutrition and health with emphasis on pigs: Current understanding, possible modulations, and new technologies for ecological studies. Canadian Journal of Animal Science 85, 421–435.

    Google Scholar 

  • Roediger, W.E.W., Moore, A., 1981. Effect of short-chain fatty acid on sodium absorption in isolated human colon perfused through the vascular bed. Digestive Diseases and Sciences 26, 100–106. doi:10.1007/BF01312224

    CAS  PubMed  Google Scholar 

  • Rosen, G.D., 2007. Holo-analysis of the efficacy of Bio-Mos® in broiler nutrition. British Poultry Science 48, 21–26. doi:10.1080/00071660601050755

    CAS  PubMed  Google Scholar 

  • Ruppin, H., Bar-Mier, S., Soergel, K.H., Wood, C.M., Schmitt, M.G.J., 1980. Absorption of short-chain fatty acids by the colon. Gastroenterology 78, 1500–1507.

    CAS  PubMed  Google Scholar 

  • Russell, P.J., Geary, T.M., Brooks, P.H., Campbell, A., 1996. Performance, water use and effluent output of weaner pigs fed ad libitum with either dry pellets or liquid feed and the role of microbial activity in the liquid feed. Journal of the Science of Food and Agriculture 72, 8–16. doi:10.1002/(SICI)1097-0010(199609)72:1<8::AID-JSFA646>3.0.CO;2-K

    CAS  Google Scholar 

  • Salminen, S., Boulez, C., Boutron-Ruault, M.-C., Cummings, J.H., Frank, A., Gibson, G.R., Isolauri, E., Moreau, M.-C., Roberfroid, M., Rowland, I., 1998. Functional food science and gastrointestinal physiology and function. British Journal of Nutrition 80 Suppl.1, S147–S171. doi:10.1079/BJN19980108

    CAS  PubMed  Google Scholar 

  • Schneitz, C., 2005. Competitive exclusion in poultry-30 years of research. Food Control 16, 657–667. doi:10.1016/j.foodcont.2004.06.002

    Google Scholar 

  • Scholten, R.H.J., van der Peet-Schwering, C.M.C., Verstegen, M.W.A., den Hartog, L.A., Schrama, J.W., Vesseur, P.C., 1999. Fermented co-products and fermented compound diets for pigs: a review. Animal Feed Science and Technology 82, 1–19. doi:10.1016/S0377-8401(99)00096-6

    CAS  Google Scholar 

  • Skrede, A., Sahlstrom, S., Ahlstrom, O., Connor, K.H., Skrede, G., 2007. Effects of lactic acid fermentation and gamma irradiation of barley on antinutrient contents and nutrient digestibility in mink (Mustela vison) with and without dietary enzyme supplement. Archives of Animal Nutrition 61, 211–221. doi:10.1080/17450390701297727

    CAS  PubMed  Google Scholar 

  • Smirnov, A., Perez, R., Amit-Romach, E., Sklan, D., Uni, Z., 2005. Mucin dynamics and microbial populations in chicken small intestine are changed by dietary probiotic and antibiotic growth promoter supplementation. Journal of Nutrition 135, 187–192.

    CAS  PubMed  Google Scholar 

  • Snel, J., Harmsen, H.J.M., van der Wielen, P.W.J.J., Williams, B.A., 2002. Dietary strategies to influence the gastrointestinal microflora of young animals, and its potential to improve intestinal health, In: Blok, M.C., Vahl, H.A., de Lange, L., van de Braak, A.E., Hemke, G., Hessing, M. (Eds.), Nutrition and health of the gastrointestinal tract, Wageningen Academic Publishers, Wageningen, Netherlands, pp. 37–69.

    Google Scholar 

  • Steiner, T., 2006. Managing Gut Health: Natural Growth Promoters as a Key to Animal Performances. Nottingham University Press, Nottingham.

    Google Scholar 

  • Stewart, C.S., Hilman, K., Maxwell, F., Kelly, D., King, T.P., 1993. Recent advances in probiotics in pigs:observations on the microbiology of the pig gut., In: Garnsworthy, P.C., Cole, D.J.A. (Eds.), In. Recent Advances in Animal Nutrition, Nottinghan University Press, Nottingham, pp. pp 197–220.

    Google Scholar 

  • van der Klis, J.D., Jansman, A.J.M., 2002. Optimising nutrient digestion, absorption and gut barrier function in monogastrics: Reality or illusion?, In: Blok, M.C., Vahl, H.A., de Lange, L., van de Braak, A.E., Hemke, G., Hessing, M. (Eds.), Nutrition and health of the gastrointestinal tract, Wageningen Academic Publishers, Wageningen, Netherlands, pp. 15–36.

    Google Scholar 

  • van der Waaij, D., Berghuis de Vries, J.M., Lekkerkerk van der Wees, J.E.C., 1971. Colonisation resistance of the digestive tract in conventional and antibiotic treated mice. Journal of Hygiene, Cambridge 69, 405–411.

    Google Scholar 

  • van Immerseel, F., Fievez, V., de Buck, J., Pasmans, F., Martel, A., Haesebrouck, F., Ducatelle, R., 2004. Microencapsulated short-chain fatty acids in feed modify colonisation and invasion early after infection with Salmonella enteritidis in young chickens. Poultry Science 83, 69–74.

    PubMed  Google Scholar 

  • van Winsen, R.L., Keuzenkamp, D., Urlings, B.A.P., Lipman, L.J.A., Snijders, J.A.M., Verheijden, J.H.M., van Knapen, F., 2002. Effect of fermented feed on shedding of Enterobacteriaceae by fattening pigs. Veterinary Microbiology 87, 267–276. doi:10.1016/S0378-1135(02)00066-4

    PubMed  Google Scholar 

  • van Winsen, R.L., Lipman, L.J.A., Biesterveld, S., Urlings, B.A., Snijders, J.A.M., van Knapen, F., 2001. Mechanism of Salmonella reduction in fermented pig feed. Journal of the Science of Food and Agriculture 81, 342–346. doi:10.1002/1097-0010(200102)81:3<342::AID-JSFA824>3.0.CO;2-6

    Google Scholar 

  • Vaughan, E.E., Heilig, H.G.H.J., Zoetendal, E.G., Satokari, R., Collins, J.K., Akkermans, A.D.L., de Vos, W.M., 1999. Molecular approaches to study probiotic bacteria. Trends in Food Science & Technology 10, 400–404. doi:10.1016/S0924-2244(00)00030-3

    CAS  Google Scholar 

  • Verstegen, M.W.A., Williams, B.A., 2002. Alternatives to the use of antibiotics as growth promoters for monogastric animals. Animal Biotechnology 13, 113–127. doi:10.1081/ABIO-120005774

    CAS  PubMed  Google Scholar 

  • Wilkie, D.C., Van Kessel, A.G., White, L.J., Laarveld, B., Drew, M.D., 2005. Dietary Amino acids affect intestinal Clostridium perfrigens populations in broiler chickens. Canadian Journal of Animal Science 85, 185–193.

    CAS  Google Scholar 

  • Williams, B.A., Bosch, M.W., Boer, H., Verstegen, M.W.A., Tamminga, S., 2005. An in vitro batch culture method to assess potential fermentability of feed ingredients for monogastric diets. Animal Feed Science and Technology 123–124, 445–462. doi:10.1016/j.anifeedsci.200504.031

  • Williams, B.A., Bosch, M.W., Verstegen, M.W.A., 2000. Changes in digesta NH3 concentration related to fermentable carbohydrates in piglet diets, Proceedings of the British Society of Animal Science, British Society of Animal Science, Scarborough, p. 21.

    Google Scholar 

  • Williams, B.A., Verstegen, M.W.A., Tamminga, S., 2001. Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutrition Research Reviews 14, 207–227. doi:10.1079/095442201108729213

    CAS  PubMed  Google Scholar 

  • Williams, J., Mallet, S., Leconte, M., Lessire, M., Gabriel, I., 2008. The effects of fructo-oligosaccharides or whole wheat on the performance and digestive tract of broiler chickens. British Poultry Science 49, 329–339. doi:10.1080/00071660802123351

    CAS  PubMed  Google Scholar 

  • Wilson, A.R., Sigee, D., Epton, H.A.S., 2005. Anti-bacterial activity of Lactobacillus plantarum strain SK1 against Listeria monocytogenes is due to lactic acid production. Journal of Applied Microbiology 99, 1516–1522. doi:10.1111/j.1365-2672.2005.02725.x

    CAS  PubMed  Google Scholar 

  • Yang, Y., Iji, P.A., Kocher, A., Mikkelsen, L.L., Choct, M., 2007. Effects of Mannanoligosaccharide on Growth Performance, the Development of Gut Microflora, and Gut Function of Broiler Chickens Raised on New Litter. Journal of Applied Poultry Research 16, 280–288.

    Google Scholar 

  • Yang, Y., Iji, P.A., Kocher, A., Mikkelsen, L.L., Choct, M., 2008a. Effects of dietary mannanoligosaccharide on growth performance, nutrient digestibility and gut development of broilers given different cereal-based diets. J. Anim. Physiol. Anim. Nutr. 92, 650–659. doi:10.1111/j.1439-0396.2007.00761.x

    CAS  Google Scholar 

  • Yang, Y., Iji, P.A., Kocher, A., Thomson, E., Mikkelsen, L.L., Choct, M., 2008b. Effects of mannanoligosaccharide in broiler chicken diets on growth performance, energy utilisation, nutrient digestibility and intestinal microflora. British Poultry Science 49, 186–194. doi:10.1080/00071660801998613

    CAS  PubMed  Google Scholar 

  • Yegani, M., Korver, D.R., 2008. Factors Affecting Intestinal Health in Poultry. Poultry Science 87, 2052–2063. doi:10.3382/ps.2008-00091

    CAS  PubMed  Google Scholar 

  • Zhu, X.Y., Zhong, T., Pandya, Y., Joerger, R.D., 2002. 16S rRNA-Based Analysis of Microbiota from the Cecum of Broiler Chickens Applied and Environmental Microbiology 68, 124–137.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the commonwealth scholarship commission, U. K. for funding A.T. Niba through a commonwealth scholarship at the University of Plymouth where this review was written.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Niba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niba, A.T., Beal, J.D., Kudi, A.C. et al. Bacterial fermentation in the gastrointestinal tract of non-ruminants: Influence of fermented feeds and fermentable carbohydrates. Trop Anim Health Prod 41, 1393 (2009). https://doi.org/10.1007/s11250-009-9327-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-009-9327-6

Keywords

Navigation