Skip to main content
Log in

Superficial Modulus, Water-Content, and Mesh-Size at Hydrogel Surfaces

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The most distal surfaces of lubricious high water-content aqueous gels may have decreasing concentrations and gradients of macromolecular chains on the surface that emanate outward into the environment. This superficial zone of extended polymer chains has a water-content that approaches 100% over the final few hundred nanometers, and the superficial modulus is the elastic modulus of this superficial surface. Micro-rheology using high-speed microscopy with fluorescent nanospheres enabled measurements of both the storage modulus G′ and the loss modulus G″ over a frequency range of 0.4 1/s–50 1/s. 100 µm-thick control samples of polyacrylamide gels with equilibrium water-content of 97.9%, 98.4%, and 98.9% had measured storage moduli of 70.3 ± 26.9 Pa, 53.3 ± 22.4 Pa, and 38.8 ±14 Pa, respectively. Master curves based on meta-data analysis from published measurements of mesh-size, water-content, and elastic modulus were created and used to relate rheological measurements of the superficial modulus to water-content and mesh-size. This interfacial microrheological measurement method was further used to quantify the superficial modulus and water-content of two commercial contact lens materials that have water-gradient gels on their surfaces: delefilcon A (E = 48 ± 11 Pa, > 99.6% water) and lehfilcon A (E = 10 ± 8 Pa, > 99.7% water). The micro-rheology method on Gemini gel interfaces facilitates measurements of the most distal superficial zone of aqueous gels and the quantification of the superficial modulus and water-content of these surfaces.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bonyadi, S.Z., Hasan, M.M., Kim, J., Mahmood, S., Schulze, K.D., Dunn, A.C.: Review: friction and lubrication with high water content crosslinked hydrogels. Tribol. Lett. 68, 119 (2020). https://doi.org/10.1007/s11249-020-01352-3

    Article  CAS  Google Scholar 

  2. Pitenis, A.A., Urueña, J.M., Nixon, R.M., Bhattacharjee, T., Krick, B.A., Dunn, A.C., Angelini, T.E., Sawyer, W.G.: Lubricity from entangled polymer networks on hydrogels. J. Tribol. 138, 042102 (2016). https://doi.org/10.1115/1.4032889

    Article  CAS  Google Scholar 

  3. Pitenis, A.A., Sawyer, W.G.: Lubricity of high water content aqueous Gels. Tribol. Lett. 66, 113 (2018). https://doi.org/10.1007/s11249-018-1063-5

    Article  CAS  Google Scholar 

  4. Pitenis, A.A., Urueña, J.M., Cooper, A.C., Angelini, T.E., Sawyer, W.G.: Superlubricity in Gemini hydrogels. J. Tribol. 138, 042103 (2016). https://doi.org/10.1115/1.4032890

    Article  CAS  Google Scholar 

  5. Urueña, J.M., Pitenis, A.A., Nixon, R.M., Schulze, K.D., Angelini, T.E., Sawyer, W.G.: Mesh size control of polymer fluctuation lubrication in Gemini hydrogels. Biotribology 1–2, 24–29 (2015). https://doi.org/10.1016/j.biotri.2015.03.001

    Article  Google Scholar 

  6. Meier, Y.A., Zhang, K., Spencer, N.D., Simic, R.: Linking friction and surface properties of hydrogels molded against materials of different surface energies. Langmuir 35, 15805–15812 (2019). https://doi.org/10.1021/acs.langmuir.9b01636

    Article  CAS  Google Scholar 

  7. Dunn, A.C., Urueña, J.M., Huo, Y., Perry, S.S., Angelini, T.E., Sawyer, W.G.: Lubricity of surface hydrogel layers. Tribol. Lett. 49, 371–378 (2013). https://doi.org/10.1007/s11249-012-0076-8

    Article  CAS  Google Scholar 

  8. Kii, A., Xu, J., Gong, J.P., Osada, Y., Zhang, X.: Heterogeneous polymerization of hydrogels on hydrophobic substrate. J. Phys. Chem. B 105, 4565–4571 (2001). https://doi.org/10.1021/jp003242u

    Article  CAS  Google Scholar 

  9. Simič, R., Spencer, N.D.: Controlling the friction of gels by regulating interfacial oxygen during polymerization. Tribol. Lett. 69, 86 (2021). https://doi.org/10.1007/s11249-021-01459-1

    Article  CAS  Google Scholar 

  10. Hart, S.M., McGhee, E.O., Urueña, J.M., Levings, P.P., Eikenberry, S.S., Schaller, M.A., Pitenis, A.A., Sawyer, W.G.: Surface gel layers reduce shear stress and damage of corneal epithelial cells. Tribol. Lett. 68, 106 (2020). https://doi.org/10.1007/s11249-020-01344-3

    Article  CAS  Google Scholar 

  11. Linden, S.K., Sutton, P., Karlsson, N.G., Korolik, V., McGuckin, M.A.: Mucins in the mucosal barrier to infection. Mucosal Immunol. 1, 183–197 (2008). https://doi.org/10.1038/mi.2008.5

    Article  CAS  Google Scholar 

  12. Zhang, K., Simic, R., Spencer, N.D.: Imparting ultralow lubricity to double-network hydrogels by surface-initiated controlled radical polymerization under ambient conditions. Biotribology 26, 100161 (2021). https://doi.org/10.1016/j.biotri.2021.100161

    Article  Google Scholar 

  13. Seror, J., Zhu, L., Goldberg, R., Day, A.J., Klein, J.: Supramolecular synergy in the boundary lubrication of synovial joints. Nat. Commun. 6, 6497 (2015). https://doi.org/10.1038/ncomms7497

    Article  CAS  Google Scholar 

  14. Ma, L., Gaisinskaya-Kipnis, A., Kampf, N., Klein, J.: Origins of hydration lubrication. Nat. Commun. 6, 1–6 (2015). https://doi.org/10.1038/ncomms7060

    Article  CAS  Google Scholar 

  15. Lin, W., Klein, J.: Recent progress in cartilage lubrication. Adv. Mater. 33, 2005513 (2021). https://doi.org/10.1002/adma.202005513

    Article  CAS  Google Scholar 

  16. Moore, A.C., Burris, D.L.: Tribological rehydration of cartilage and its potential role in preserving joint health. Osteoarthr. Cartil. 25, 99–107 (2017). https://doi.org/10.1016/j.joca.2016.09.018

    Article  CAS  Google Scholar 

  17. Shoaib, T., Espinosa-Marzal, R.M.: Insight into the viscous and adhesive contributions to hydrogel friction. Tribol. Lett. 66, 96 (2018). https://doi.org/10.1007/s11249-018-1045-7

    Article  CAS  Google Scholar 

  18. Li, A., Ramakrishna, S.N., Kooij, E.S., Espinosa-Marzal, R.M., Spencer, N.D.: Poly(acrylamide) films at the solvent-induced glass transition: adhesion, tribology, and the influence of crosslinking. Soft Matter 8, 9092 (2012). https://doi.org/10.1039/c2sm26222c

    Article  CAS  Google Scholar 

  19. Mason, T.G., Weitz, D.A.: Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys. Rev. Lett. 74, 1250–1253 (1995). https://doi.org/10.1103/PhysRevLett.74.1250

    Article  CAS  Google Scholar 

  20. Schulze, K.D., Hart, S.M., Marshall, S.L., O’Bryan, C.S., Urueña, J.M., Pitenis, A.A., Sawyer, W.G., Angelini, T.E.: Polymer osmotic pressure in hydrogel contact mechanics. Biotribology 11, 3–7 (2017). https://doi.org/10.1016/j.biotri.2017.03.004

    Article  Google Scholar 

  21. Mason, T.G.: Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation. Rheol. Acta 39, 371–378 (2000). https://doi.org/10.1007/s003970000094

    Article  CAS  Google Scholar 

  22. De Gennes, P.G.: Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca (1979)

    Google Scholar 

  23. Gordon, M.: Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca (1981)

    Book  Google Scholar 

  24. Munoz-Pinto, D.J., Samavedi, S., Grigoryan, B., Hahn, M.S.: Impact of secondary reactive species on the apparent decoupling of poly(ethylene glycol) diacrylate hydrogel average mesh size and modulus. Polymer (Guildf). 77, 227–238 (2015). https://doi.org/10.1016/j.polymer.2015.09.032

    Article  CAS  Google Scholar 

  25. Bhattacharyya, A., O’Bryan, C., Ni, Y., Morley, C.D., Taylor, C.R., Angelini, T.E.: Hydrogel compression and polymer osmotic pressure. Biotribology 22, 100125 (2020). https://doi.org/10.1016/j.biotri.2020.100125

    Article  Google Scholar 

  26. Park, I.H., Johnson, C.S., Gabriel, D.A.: Probe diffusion in polyacrylamide gels as observed by means of holographic relaxation methods: search for a universal equation. Macromolecules 23, 1548–1553 (1990). https://doi.org/10.1021/ma00207a052

    Article  CAS  Google Scholar 

  27. Wu, P.-J., Kabakova, I.V., Ruberti, J.W., Sherwood, J.M., Dunlop, I.E., Paterson, C., Török, P., Overby, D.R.: Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials. Nat. Methods. 15, 561–562 (2018). https://doi.org/10.1038/s41592-018-0076-1

    Article  CAS  Google Scholar 

  28. Horkay, F., Magda, J., Alcoutlabi, M., Atzet, S., Zarembinski, T.: Structural, mechanical and osmotic properties of injectable hyaluronan-based composite hydrogels. Polymer (Guildf). 51, 4424–4430 (2010). https://doi.org/10.1016/j.polymer.2010.06.027

    Article  CAS  Google Scholar 

  29. Girardo, S., Träber, N., Wagner, K., Cojoc, G., Herold, C., Goswami, R., Schlüßler, R., Abuhattum, S., Taubenberger, A., Reichel, F., Mokbel, D., Herbig, M., Schürmann, M., Müller, P., Heida, T., Jacobi, A., Ulbricht, E., Thiele, J., Werner, C., Guck, J.: Standardized microgel beads as elastic cell mechanical probes. J. Mater. Chem. B 6, 6245–6261 (2018). https://doi.org/10.1039/C8TB01421C

    Article  CAS  Google Scholar 

Download references

Funding

The research leading to these results received funding from Alcon Laboratories. Author DTN is supported by a National Science Foundation Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Gregory Sawyer.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedro, D.I., Nguyen, D.T., Trachsel, L. et al. Superficial Modulus, Water-Content, and Mesh-Size at Hydrogel Surfaces. Tribol Lett 69, 160 (2021). https://doi.org/10.1007/s11249-021-01538-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-021-01538-3

Navigation