Skip to main content
Log in

Multiscale Friction Simulation of Dry Polymer Contacts: Reaching Experimental Length Scales by Coupling Molecular Dynamics and Contact Mechanics

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

This work elucidates friction in Poly-Ether-Ether-Ketone (PEEK) sliding contacts through multiscale simulations. At the nanoscale, non-reactive classical molecular dynamics (MD) simulations of dry and water-lubricated amorphous PEEK–PEEK interfaces are performed. During a short running-in phase, we observe structural transformations at the sliding interface that result in flattening of the initial nanotopographies accompanied by strong polymer chain alignment in the shearing direction. The MD simulations also reveal a linear pressure – shear stress dependence and large adhesive friction in dry conditions. This dependence, summarized in a nanoscale friction law, is of central importance for our multiscale approach, since it forms a link between MD and elastoplastic contact mechanics calculations. An integration of the nanoscale friction law over the real area of contact yields a macroscopic friction coefficient that allows for a meaningful comparison with measurements from macroscopic tribometer experiments. Severe normal loading conditions result in significant wear and high experimental friction coefficients µ≈0.5–0.7, which are in good agreement with the calculated values from the multiscale approach in dry conditions. For milder experimental loads, our multiscale model suggests that lower friction states with µ≈0.2 originate in the presence of physisorbed molecules (e.g., water), which significantly reduce interfacial adhesion.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tiwari, A., Miyashita, N., et al.: Rubber friction: the contribution from the area of real contact. J. Chem. Phys. 148, 224701 (2018)

    Article  CAS  Google Scholar 

  2. Bahadur, S., Ludema, K.C.: The viscoelastic nature of the sliding friction fo polyethylene, polypropylene and copolymers. Wear 18, 109–128 (1971)

    Article  CAS  Google Scholar 

  3. Weber, B., Suhina, T., et al.: Molecular probes reveal deviations from Amontons’ law in multi-asperity frictional contacts. Nat. Commun. 9, 888 (2018)

    Article  CAS  Google Scholar 

  4. Hyun, S., Pei, L., et al.: Finite-element analysis of contact between elastic self-affine surfaces. Phys. Rev. E 70, 026117 (2004)

    Article  CAS  Google Scholar 

  5. Amuzu, J.K.A., Briscoe, B.J., Tabor, D.: Friction and shear strength of polymers. A S L E Transactions 20, 354–358 (1977)

    Article  CAS  Google Scholar 

  6. Benabdallah, S.H.: Static shear strength and adhesion friction of some thermoplastics. Polym. Eng. Sci. 33, 543–548 (1993)

    Article  CAS  Google Scholar 

  7. Persson, B.N.J., Volokitin, A.I.: Rubber friction on smooth surfaces. Eur. Phys. J. E 21, 69–80 (2006)

    Article  CAS  Google Scholar 

  8. Singh, A.K., Juvekar, V.A.: Steady dynamic friction at elastomer–hard solid interface: a model based on population balance of bonds. Soft Matter 7(22), 10601–10611 (2011)

    Article  CAS  Google Scholar 

  9. Unal, H., Mimaroglu, A.: Friction and wear characteristics of PEEK and its composite under water lubrication. J. Reinf. Plast. Compos. 25, 1659–1667 (2006)

    Article  CAS  Google Scholar 

  10. Voyer, J., Klien, S., et al.: Static and dynamic friction of pure and friction-modified PA6 polymers in contact with steel surfaces: influence of surface roughness and environmental conditions. Lubricants 7, 17 (2019)

    Article  Google Scholar 

  11. Laux, K.A., Jean-Fulcrand, A., et al.: The influence of surface properties on sliding contact temperature and friction for polyetheretherketone (PEEK). Polymer 103, 397–404 (2016)

    Article  CAS  Google Scholar 

  12. Ashurst, W.T., Hoover, W.G.: Dense-fluid shear viscosity via nonequilibrium molecular dynamics. Phys. Rev. A 11, 658–678 (1975)

    Article  Google Scholar 

  13. Ewen, J.P., Heyes, D.M., Dini, D.: Advances in nonequilibrium molecular dynamics simulations of lubricants and additives. Friction 6, 349–386 (2018)

    Article  CAS  Google Scholar 

  14. Barry, P.R., Chiu, P.Y., et al.: The effect of normal load on polytetrafluoroethylene tribology. J. Phys. Condens. Matter 21, 144201 (2009)

    Article  Google Scholar 

  15. Chiu, P.Y., Barry, P.R., et al.: Influence of the molecular level structure of polyethylene and polytetrafluoroethylene on their tribological response. Tribol. Lett. 42, 193–201 (2011)

    Article  CAS  Google Scholar 

  16. Barry, P.R., Chiu, P.Y., et al.: Effect of temperature on the friction and wear of PTFE by atomic-level simulation. Tribol. Lett. 58, 50 (2015)

    Article  Google Scholar 

  17. Li, C., Strachan, A.: Molecular dynamics predictions of thermal and mechanical properties of thermoset polymer EPON862/DETDA. Polymer 52, 2920–2928 (2011)

    Article  CAS  Google Scholar 

  18. Fang, Q., Tian, Y., et al.: Revealing the deformation mechanism of amorphous polyethylene subjected to cycle loading via molecular dynamics simulations. RSC Adv. 8(56), 32377–32386 (2018)

    Article  CAS  Google Scholar 

  19. Li, C., Browning, A.R., et al.: Atomistic simulations on multilayer graphene reinforced epoxy composites. Compos. A Appl. Sci. Manuf. 43, 1293–1300 (2012)

    Article  CAS  Google Scholar 

  20. Li, Y., Wang, Q., Wang, S.: A review on enhancement of mechanical and tribological properties of polymer composites reinforced by carbon nanotubes and graphene sheet: molecular dynamics simulations. Compos. B Eng. 160, 348–361 (2019)

    Article  CAS  Google Scholar 

  21. Moghadam, A.D., Omrani, E., et al.: Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene – A review. Compos. B Eng. 77, 402–420 (2015)

    Article  Google Scholar 

  22. Zhan, S., Xu, H., et al.: Molecular dynamics simulation of microscopic friction mechanisms of amorphous polyethylene. Soft Matter 15(43), 8827–8839 (2019)

    Article  CAS  Google Scholar 

  23. Jadhao, V., Robbins, M.O.: Probing large viscosities in glass-formers with nonequilibrium simulations. Proc. Natl. Acad. Sci. U. S. A. 114(30), 7952–7957 (2017)

    Article  CAS  Google Scholar 

  24. Ewen, J.P., Gattinoni, C., et al.: On the effect of confined fluid molecular structure on nonequilibrium phase behaviour and friction. Phys. Chem. Chem. Phys. 19, 17883–17894 (2017)

    Article  CAS  Google Scholar 

  25. Porras-Vazquez, A., Martinie, L., et al.: Independence between friction and velocity distribution in fluids. Phys. Chem. Chem. Phys. 20, 27280–27293 (2018)

    Article  CAS  Google Scholar 

  26. King, M.A., Blundell, D.J., et al.: Modelling studies of crystalline PEEK. Mol. Simul. 4, 3–13 (1989)

    Article  Google Scholar 

  27. Chen, C.L., Lee, C.L., et al.: Molecular dynamics simulation of a phenylene polymer 3. PEEK. Macromolecules 27, 7872–7876 (1994)

    Article  CAS  Google Scholar 

  28. Pisani, W.A., Radue, M.S., et al.: Multiscale modeling of PEEK using reactive molecular dynamics modeling and micromechanics. Polymer 163, 96–105 (2019)

    Article  CAS  Google Scholar 

  29. Cruz-Chú, E.R., Villegas-Rodríguez, G.J., et al.: Mechanical characterization and induced crystallization in nanocomposites of thermoplastics and carbon nanotubes. Npj Comput. Mater. 6, 151 (2020)

    Article  Google Scholar 

  30. Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996)

    Article  CAS  Google Scholar 

  31. Price, M.L.P., Ostrovsky, D., Jorgensen, W.L.: Gas-phase and liquid-state properties of esters, nitriles, and nitro compounds with the OPLS-AA force field. J. Comput. Chem. 22, 1340–1352 (2001)

    Article  CAS  Google Scholar 

  32. Jorgensen, W.L., Chandrasekhar, J., et al.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983)

    Article  CAS  Google Scholar 

  33. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  CAS  Google Scholar 

  34. Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010)

    Article  Google Scholar 

  35. Shinoda, W., Shiga, M., Mikami, M.: Rapid estimation of elastic constants by molecular dynamics simulation under constant stress. Phys. Rev. B 69(13), 134103 (2004)

    Article  Google Scholar 

  36. Geier, S., Schmitz, H., et al.: In Kunststoffe: Eigenschaften und Anwendungen. In: Elsner, P., Eyerer, P., Hirth, T. (eds.) Springer, pp. 115–1201. Berlin Heidelberg, Berlin (2012)

    Google Scholar 

  37. Mehmet-Alkan, A.A., Hay, J.N.: The crystallinity of poly (ether ether ketone). Polymer 33(16), 3527–3530 (1992)

    Article  CAS  Google Scholar 

  38. Lovinger, A.J., Davis, D.D.: Electron-microscopic investigation of the morphology of a melt-crystallized polyaryletherketone. J. Appl. Phys. 58, 2843–2853 (1985)

    Article  CAS  Google Scholar 

  39. Pastewka, L., Moser, S., Moseler, M.: Atomistic insights into the running-in, lubrication, and failure of hydrogenated diamond-like carbon coatings. Tribol. Lett. 39, 49–61 (2010)

    Article  CAS  Google Scholar 

  40. Scherillo, G., Petretta, M., et al.: Thermodynamics of water sorption in high performance glassy thermoplastic polymers. Front. Chem. 2, 25 (2014)

    Article  Google Scholar 

  41. Pastewka, L., Jacobs, T. & Robbins, M. O., contact.engineering, Available at https://contact.engineering/.

  42. Stanley, H.M., Kato, T.: An FFT-based method for rough surface contact. J. Tribol. 119, 481–485 (1997)

    Article  Google Scholar 

  43. Pastewka, L., Sharp, T.A., Robbins, M.O.: Seamless elastic boundaries for atomistic calculations. Phys. Rev. B 86(7), 075459 (2012)

    Article  Google Scholar 

  44. Polonsky, I.A., Keer, L.M.: A numerical method for solving rough contact problems based on the multi-level multi-summation and conjugate gradient techniques. Wear 231, 206–219 (1999)

    Article  CAS  Google Scholar 

  45. Richards, F.M.: Areas, volumes, packing and protein structure. Annu. Rev. Biophys. Bioeng. 6, 151–176 (1977)

    Article  CAS  Google Scholar 

  46. Eder, S.J., Vernes, A., Betz, G.: On the derjaguin offset in boundary-lubricated nanotribological systems. Langmuir 29, 13760–13772 (2013)

    Article  CAS  Google Scholar 

  47. Ma, C.-C.M., Yur, S.-W.: Environmental effects on the water absorption and mechanical properties of carbon fiber reinforced PPS and PEEK composites Part II. Polym. Eng. Sci. 31, 34–39 (1991)

    Article  CAS  Google Scholar 

  48. Tiwari, A., Wang, A., et al.: Contact mechanics for solids with randomly rough surfaces and plasticity. Lubricants 7, 90 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for providing computing time under project hfr14 through the John von Neumann Institute for Computing (NIC) on the GCS Supercomputer JUWELS at Jülich Supercomputing Centre (JSC). We also gratefully acknowledge the computing time for supporting calculations granted under project ASTC on the supercomputer ForHLRII funded by the Ministry of Science, Research and the Arts Baden-Württemberg and by the Federal Ministry of Education and Research. The authors also thank Freudenberg Sealing Technologies for the preparation of the polymer samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Savio.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savio, D., Hamann, J., Romero, P.A. et al. Multiscale Friction Simulation of Dry Polymer Contacts: Reaching Experimental Length Scales by Coupling Molecular Dynamics and Contact Mechanics. Tribol Lett 69, 70 (2021). https://doi.org/10.1007/s11249-021-01444-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-021-01444-8

Keywords

Navigation