Skip to main content
Log in

Articular Cartilage Inspired the Construction of LTi–DA–PVA Composite Structure with Excellent Surface Wettability and Low Friction Performance

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

On the purpose of improving the surface wettability and tribological properties of Ti6Al4V alloy for artificial joints, we designed a novel ‘soft (hydrogel layer)–hard (porous Ti6Al4V alloy substrate)’ structure, which was fabricated by laser texturing, surface dopamine modification and poly(vinyl alcohol) (PVA) hydrogel casting. Characterization results revealed that the PVA hydrogel layer could be attached to Ti6Al4V alloy successfully, and the LTi–DA–PVA specimen obtained a hydrophilic surface with a static water contact of 32°. It is worth noting that compared to the pristine Ti6Al4V alloy, the friction coefficient of the LTi–DA–PVA specimen could be as low as 0.01, which is similar to that of natural cartilage. This result was attributed to the synergistic effect of the high load-bearing capacity of the lower Ti6Al4V substrate and the good biphasic lubrication of the upper PVA hydrogel layer. In addition, the introduction of dopamine could significantly improve the interfacial bonding performance between the substrate and the hydrogel layer. This work provides an effective method for improving the surface wettability and tribological properties of Ti6Al4V as artificial joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Furey, M.J., Burkhardt, B.M.: Biotribology: friction, wear, and lubrication of natural synovial joints. Lubr. Sci. 9, 255–271 (1997)

    Article  Google Scholar 

  2. Murakami, T.: Importance of adaptive multimode lubrication mechanism in natural and artificial joints. Proc. IMechE. Part J: J. Eng. Tribol. 226, 827–837 (2012)

    Article  Google Scholar 

  3. Qu, M.H., Liu, H., Yan, C.Y., Ma, S.H., Cai, M.R., Ma, Z.F., Zhou, F.: Layered hydrogel with controllable surface dissociation for durable lubrication. Chem. Mater. 32, 7805–7813 (2020)

    Article  CAS  Google Scholar 

  4. Schulz, R.M., Bader, A.: Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur. Biophys. J. 36, 539–568 (2007)

    Article  CAS  Google Scholar 

  5. Shi, Y., Xiong, D.S., Liu, Y.T., Wang, N., Zhao, X.D.: Swelling, mechanical and friction properties of PVA/PVP hydrogels after swelling in osmotic pressure solution. Mat. Sci. Eng. C 65, 172–180 (2016)

    Article  CAS  Google Scholar 

  6. Carrabba, M., Sarzi-Puttini, P.: Introduction osteoarthritis in the third millennium: a new era for an old disease? Semin. Arthritis Rheu. 6, 1–2 (2005)

    Google Scholar 

  7. Li, F., Su, Y.L., Wang, J.P., Wu, G., Wang, C.W.: Influence of dynamic load on friction behavior of human articular cartilage, stainless steel and polyvinyl alcohol hydrogel as artificial cartilage. J. Mater. Sci. Mater. Med. 21, 147–154 (2010)

    Article  CAS  Google Scholar 

  8. Qin, L.G., Feng, X.N., Hafezi, M., Zhang, Y.L., Guo, J.D., Dong, G.N., Qin, Y.B.: Investigating the tribological and biological performance of covalently grafted chitosan coatings on Co–Cr–Mo alloy. Tribol. Int. 127, 302–312 (2018)

    Article  CAS  Google Scholar 

  9. Senatov, F.S., Gorshenkov, M.V., Kaloshkin, S.D., Tcherdyntsev, V.V., Anisimova, N.Y., Kopylov, A.N., Kiselevsky, M.V.: Biocompatible polymer composites based on ultrahigh molecular weight polyethylene perspective for cartilage defects replacement. J. Alloy. Compd. 586, 5544–5547 (2014)

    Article  Google Scholar 

  10. Ruggiero, A., D’Amato, R., Gomez, E., Merola, M.: Experimental comparison on tribological pairs UHMWPE/TIAL6V4 alloy, UHMWPE/AISI316L austenitic stainless and UHMWPE/AL2O3 ceramic, under dry and lubricated conditions. Tribol. Int. 96, 349–360 (2016)

    Article  CAS  Google Scholar 

  11. Kyomoto, M., Moro, T., Yamane, S., Hashimoto, M., Takatori, Y., Ishihara, K.: Poly(ether-ether-ketone) orthopedic bearing surface modified by self-initiated surface grafting of poly(2-methacryloyloxyethylphosphorylcholine). Biomaterials 34, 7829–7839 (2013)

    Article  CAS  Google Scholar 

  12. Lecocq, M., Linares, J.M., Chaves-Jacob, J., Coyle, T., Roffino, S., Eyraud, M., Gigmes, D., Decherchi, P.: Total knee arthroplasty with a Ti6Al4V/PEEK prosthesis on an osteoarthritis rat model: behavioral and neurophysiological analysis. Sci. Rep. 10, 1–15 (2020)

    Article  Google Scholar 

  13. Li, A., Su, F.H., Chu, P.K., Sun, J.F.: Articular cartilage inspired bilayer coating on Ti6Al4V alloy with low friction and high load-bearing properties. Appl. Surf. Sci. 515, 1–10 (2020)

    Article  Google Scholar 

  14. Duan, Y.Q., Liu, Y.H., Li, J.J., Feng, S.F., Wen, S.Z.: AFM study on superlubricity between Ti6Al4V/Polymer surfaces achieved with liposomes. Biomacromol 20, 1522–1529 (2019)

    Article  CAS  Google Scholar 

  15. Zhang, C.X., Liu, Z.F., Liu, Y.H., Ren, J., Cheng, Q., Yang, C.B., Cai, L.G.: Novel tribological stability of the superlubricity poly (vinylphosphonicacid) (PVPA) coatings on Ti6Al4V: velocity and load independence. Appl. Surf. Sci. 392, 19–26 (2017)

    Article  CAS  Google Scholar 

  16. Deng, Y.L., Sun, J.J., Ni, X.Y., Xiong, D.S.: Multilayers of poly(ethyleneimine)/poly(acrylic acid) coatings on Ti6Al4V acting as lubricated polymer-bearing interface. J. Biomed. Mater. Res. 108B, 2141–2152 (2020)

    Article  Google Scholar 

  17. Sadeghi, M., Kharaziha, M., Salimijazi, H.: Double layer graphene oxide-PVP coatings on the textured Ti6Al4V for improvement of frictional and biological behavior. Surf. Coat. Tech. 374, 656–665 (2019)

    Article  CAS  Google Scholar 

  18. Cao, J.L., Zhao, X.W., Ye, L.: Facile method to fabricate superstrong and tough poly(vinyl alcohol) hydrogels with high energy dissipation. Ind. Eng. Chem. Res. 59, 10705–10715 (2020)

    Article  CAS  Google Scholar 

  19. Meng, Y.Q., Ye, L., Coates, P., Twigg, P.: In situ cross-linking of poly(vinyl alcohol)/graphene oxide−polyethylene glycol nanocomposite hydrogels as artificial cartilage replacement: intercalation structure, unconfined compressive behavior, and biotribological behaviors. J. Phys. Chem. C 122, 3157–3167 (2018)

    Article  CAS  Google Scholar 

  20. Murakami, T., Sakai, N., Yamaguchi, T., Yarimitsu, S., Nakashima, K., Sawae, Y., Suzuki, A.: Evaluation of a superior lubrication mechanism with biphasic hydrogels for artificial cartilage. Tribol. Int. 89, 19–26 (2015)

    Article  CAS  Google Scholar 

  21. Cui, L.L., Tong, W., Zhou, H.J., Yan, C.Q., Xiong, D.S.: PVA-BA/PEG hydrogel with bilayer structure for biomimetic articular cartilage and investigation of its biotribological and mechanical properties. J. Mater. Sci. 56, 3935–3946 (2021)

    Article  CAS  Google Scholar 

  22. Chen, K., Zhang, D.K., Cui, X.T., Wang, Q.L.: Preparation of ultrahigh-molecular-weight polyethylene grafted with polyvinyl alcohol hydrogel as an artificial joint. RSC Adv. 5, 24215–24223 (2015)

    Article  CAS  Google Scholar 

  23. Zhao, X.D., Xiong, D.S., Liu, Y.T.: Improving surface wettability and lubrication of polyetheretherketone (PEEK) by combining with polyvinyl alcohol (PVA) hydrogel. J. Mech. Behav. Biomed. Mater. 82, 27–34 (2018)

    Article  CAS  Google Scholar 

  24. Zhou, H.J., Xiong, D.S., Tong, W., Shi, Z.B., Xiong, X.Y.: Lubrication behaviors of PVA-casted LSPEEK hydrogels in artificial cartilage repair. J. Appl. Polym. Sci. 136, 1–8 (2019)

    Article  CAS  Google Scholar 

  25. Wang, C.C., Hu, H.X., Li, Z.P., Shen, Y.F., Xu, Y., Zhang, G.Q., Zeng, X.Q., Deng, J., Zhao, S.C., Ren, T.H., Zhang, Y.D.: Enhanced osseointegration of titanium alloy implants with laser microgrooved surfaces and graphene oxide coating. ACS Appl. Mater. Inter. 11, 39470–39483 (2019)

    Article  CAS  Google Scholar 

  26. Lee, H., Dellatore, S.M., Miller, W.M., Messersmith, P.B.: Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426–429 (2007)

    Article  CAS  Google Scholar 

  27. Chen, K., Liu, S.Y., Wu, X.F., Wang, F.Y., Chen, G.G., Yang, X.H., Xu, L.M., Qi, J.W., Luo, Y., Zhang, D.K.: Mussel-inspired construction of Ti6Al4V-hydrogel artificial cartilage material with high strength and low friction. Mater. Lett. 265, 1–4 (2020)

    Article  Google Scholar 

  28. Wang, C.C., Zhang, G.Q., Li, Z.P., Xu, Y., Zeng, X.Q., Zhao, S.C., Deng, J., Hu, H.X., Zhang, Y.D., Ren, T.H.: Microtribological properties of Ti-6Al-4V alloy treated with self-assembled dopamine and graphene oxide coatings. Tribol. Int. 137, 46–58 (2019)

    Article  CAS  Google Scholar 

  29. Liu, S.Z., Zhang, Q., Han, Y., Sun, Y.L., Zhang, Y.F., Zhang, H.Y.: Bioinspired surface functionalization of titanium alloy for enhanced lubrication and bacterial resistance. Langmuir 35, 13189–13195 (2019)

    Article  CAS  Google Scholar 

  30. Liu, Z.Y., Hu, J.C., Sun, Q., Chen, L., Feng, X.: Mussel-inspired multifunctional coating for enhancing the UV-resistant property of polypropylene fibers. Macromol. Res. 25, 431–438 (2017)

    Article  CAS  Google Scholar 

  31. Yan, C.Q., Karthik, N., Li, H., Kang, Y.H., Xiong, D.S.: The nickel based composite coating fabricated by pulse electroplating through graft between Nano-TiN and graphene oxide. Ceram. Int. 46, 15714–15718 (2020)

    Article  CAS  Google Scholar 

  32. Suzuki, A., Sasaki, S.: Swelling and mechanical properties of physically crosslinked poly (vinyl alcohol) hydrogels. Proc. IMechE. Part H: J. Eng. Med. 229, 828–844 (2015)

    Google Scholar 

  33. Guo, S.S., Zhu, X.Y., Li, M., Shi, L.Y., Ting Ong, J.L., Janczewski, D., Neoh, K.G.: Parallel control over surface charge and wettability using polyelectrolyte architecture: effect on protein adsorption and cell adhesion. ACS Appl. Mater. Interfaces. 8, 30552–30563 (2016)

    Article  CAS  Google Scholar 

  34. Toffoli, A., Parisi, L., Bianchi, M.G., Lumetti, S., Bussolati, O., Macaluso, G.M.: Thermal treatment to increase titanium wettability induces selective proteins adsorption from blood serum thus affecting osteoblasts adhesion. Mater. Sci. Eng. C 107, 1–7 (2020)

    Article  Google Scholar 

  35. Dong, H., Bloyce, A., Morton, P.H., Bell, T.: Surface engineering to improve tribological performance of Ti–6Al–4V. Surf. Eng. 13, 403–406 (1997)

    Article  Google Scholar 

  36. He, D.Q., Zheng, S.X., Pu, J.B., Zhang, G.G., Hu, L.T.: Improving tribological properties of titanium alloys by combining laser surface texturing and diamond-likecarbon film. Tribol. Int. 82, 20–27 (2015)

    Article  CAS  Google Scholar 

  37. Forster, H.B., Fisher, J.: The influence of loading time and lubricant on the friction of articular cartilage. P. I. Mech. Eng. H J. Eng. Med 210, 109–119 (1996)

    CAS  Google Scholar 

  38. Langhorn, J., Borjali, A., Hippensteel, E., Nelson, W., Raeymaekers, B.: Microtextured CoCrMo alloy for use in metal-on-polyethylene prosthetic joint bearings: multi-directional wear and corrosion measurements. Tribol. Int. 124, 178–183 (2018)

    Article  CAS  Google Scholar 

  39. Li, X.L., Yue, W., Huang, F., Kang, J.J., Zhu, L.N., Tian, B.: Tribological behaviour of textured titanium under abrasive wear. Surf. Eng. 35, 378–386 (2019)

    Article  CAS  Google Scholar 

  40. Gong, J.P.: Friction and lubrication of hydrogels—its richness and complexity. Soft Matter 2, 544–552 (2006)

    Article  CAS  Google Scholar 

  41. Liu, Y.T., Xiong, D.S., Zhao, X.D.: A bionic PEEK composite structure with negatively charged surface adsorbing molecular brushes possessing improved biotribological properties for artificial joints. Tribol. Int. 155, 1–9 (2021)

    Article  Google Scholar 

  42. Lin, P., Zhang, R., Wang, X., Wang, X.L., Cai, M.R., Yang, J., Yu, B., Zhou, F.: Articular cartilage inspired bilayer tough hydrogel prepared by interfacial modulated polymerization showing excellent combination of high load-bearing and low friction performance. ACS Macro. Lett. 5, 1191–1195 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 51975296) and Jiangsu Key Laboratory of Advanced Micro/Nano Materials and Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dangsheng Xiong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, L., Chen, J., Yan, C. et al. Articular Cartilage Inspired the Construction of LTi–DA–PVA Composite Structure with Excellent Surface Wettability and Low Friction Performance. Tribol Lett 69, 41 (2021). https://doi.org/10.1007/s11249-021-01416-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-021-01416-y

Keywords

Navigation