Skip to main content
Log in

Friction Behavior of Esophageal Mucosa Under Axial and Circumferential Extension

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

There are serious friction damage problems that few studies have focused on when conveying endoscope to the lesion locations. In this paper, the friction behavior between endoscope and esophageal mucosa tissue which stretched in different directions was studied by using a UMT-II Micro-Tribometer. Results show that the friction coefficient and energy dissipation decreased with the increasing circumferential strain, and enhanced with the increasing axial strain. The difference in friction behaviors was related to the structural and mechanical anisotropy of the esophageal tissue. The tearing degree on the mucosal surface gradually increased with the increasing normal force. Lidocaine could effectively reduce the friction dissipation and damage. The results can provide the basic data for safety operation and damage control during endoscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Cohen, L.B., Wecsler, J.S., Gaetano, J.N., et al.: Endoscopic sedation in the United States: results from a nationwide survey. Am. J. Gastroenterol. 101, 967 (2006)

    Article  Google Scholar 

  2. Gotoda, T., Yamamoto, H., Soetikno, R.M.: Endoscopic submucosal dissection of early gastric cancer. J. Gastroenterol. 41, 929–942 (2006)

    Article  Google Scholar 

  3. Ono, H., Kondo, H., Gotoda, T., et al.: Endoscopic mucosal resection for treatment of early gastric cancer. Gut. 48, 225 (2001)

    Article  CAS  Google Scholar 

  4. Adler, D.G., Baron, T.H., Davila, R.E., et al.: ASGE guideline: the role of ERCP in diseases of the biliary tract and the pancreas. Gastrointest. Endosc. 62, 1–8 (2005)

    Article  Google Scholar 

  5. Valdastri, P., Simi, M., Webster, I.I.I.R.J.: Advanced technologies for gastrointestinal endoscopy. Ann. Rev. Biomed. Eng. 14, 397–429 (2012)

    Article  CAS  Google Scholar 

  6. Ciuti, G., Menciassi, A., Dario, P.: Capsule endoscopy: from current achievements to open challenges. IEEE Rev. Biomed. Eng. 4, 59–72 (2011)

    Article  Google Scholar 

  7. Jentschura, D., Raute, M., Winter, J., et al.: Complications in endoscopy of the lower gastrointestinal tract. Surg. Endosc. 8, 672–676 (1994)

    Article  CAS  Google Scholar 

  8. Eisen, G.M., Baron, T.H., Dominitz, J.A., et al.: Complications of upper GI endoscopy. Gastrointest. Endosc. 55, 784–793 (2002)

    Article  Google Scholar 

  9. Wang, X., Meng, M.Q.H.: Study of frictional properties of the small intestine for design of active capsule endoscope// ieee/ras-embs international conference on biomedical robotics and biomechatronics. IEEE. 124–129: (1996)

  10. Kim, J.S., Sung, I.H., Kim, Y.T.: Experimental investigation of frictional and viscoelastic properties of intestine for micro-endoscope application. Tribol. Lett. 22, 143–149 (2006)

    Article  Google Scholar 

  11. Wang, X., Meng, M.Q.H., Chan, Y.: Physiological factors of the small intestine in design of active capsule endoscopy//Engineering in Medicine and Biology Society, 2005, IEEE-EMBS 2005, 27th Annual International Conference of the. IEEE. 2942–2945: (2006)

  12. Wang, X., Meng, M.Q.H.: An experimental study of resistant properties of the small intestine for an active capsule endoscope, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 224, 107–118: (2010)

  13. Woo, S.H., Kim, T.W., Cho, J.H.: Stopping mechanism for capsule endoscope using electrical stimulus. Med. Biol. Eng. Comput. 48, 97–102 (2010)

    Article  Google Scholar 

  14. Zhang, C., Liu, H., Li, H.: Experimental investigation of intestinal frictional resistance in the starting process of the capsule robot. Tribol. Int. 70, 11–17 (2014)

    Article  Google Scholar 

  15. Lee, S.H., Kim, Y.T., Yang, S., et al.: An optimal micropatterned end-effecter for enhancing frictional force on large intestinal surface. ACS Appl. Mater. Interf. 2, 1308–1316 (2010)

    Article  CAS  Google Scholar 

  16. Accoto, D., Stefanini, C., Phee, L., et al.: Measurements of the frictional properties of the gastrointestinal tract. World Tribol. Congr. 3, 7 (2001)

    Google Scholar 

  17. Kim, J.S., Sung, I.H., Kim, Y.T.: Analytical model development for the prediction of the frictional resistance of a capsule endoscope inside an intestine. Proc. Inst. Mech. Eng. 221, 837–845: (2007)

    Article  CAS  Google Scholar 

  18. Zhang, C., Liu, H., Tan, R., et al.: Modeling of velocity-dependent frictional resistance of a capsule robot inside an intestine. Tribol. Lett. 47, 295–301 (2012)

    Article  Google Scholar 

  19. Woo, S.H., Kim, T.W., Mohy-Ud-Din, Z., et al.: Small intestinal model for electrically propelled capsule endoscopy. Biomed. Eng. Online 10, 108 (2011)

    Article  Google Scholar 

  20. Woods, S.P., Constandinou, T.G.: Wireless capsule endoscope for targeted drug delivery: mechanics and design considerations. IEEE Trans. Biomed. Eng. 60, 945–953 (2013)

    Article  Google Scholar 

  21. Gao, P., Yan, G., Wang, Z., et al.: A robotic endoscope based on minimally invasive locomotion and wireless techniques for human colon. Int J Med Robot Comput Assist Surg. 7, 256–267 (2011)

    Google Scholar 

  22. He, S., Yan, G., Gao, J., et al.: Frictional and viscous characteristics of an expanding–extending robotic endoscope in the intestinal environment. Tribol. Lett. 58, 36 (2015)

    Article  Google Scholar 

  23. Yang, W., Fung, T.C., Chian, K.S., et al.: Directional, regional, and layer variations of mechanical properties of esophageal tissue and its interpretation using a structure-based constitutive model. J. Biomech. Eng. 128, 409 (2006)

    Article  CAS  Google Scholar 

  24. Natali, A.N., Carniel, E.L., Gregersen, H.: Biomechanical behaviour of oesophageal tissues: material and structural configuration, experimental data and constitutive analysis. Med. Eng. Phys. 31, 1056–1062 (2009)

    Article  Google Scholar 

  25. Yang, J., Zhao, J., Liao, D., et al.: Biomechanical properties of the layered oesophagus and its remodelling in experimental type-1 diabetes. J. Biomech. 39, 894–904 (2006)

    Article  Google Scholar 

  26. Yang, W., Fung, T.C., Chian, K.S., et al.: 3D mechanical properties of the layered esophagus: experiment and constitutive model. J. Biomech. Eng. 128, 899–908 (2006)

    Article  CAS  Google Scholar 

  27. Lin, C.X., Yu, Q.Y., Wang, J., et al.: Friction behavior between endoscopy and esophageal internal surface. Wear. 376, 272–280 (2017)

    Article  Google Scholar 

  28. Correia, N.T., Ramos, J.M., Saramago, B.J.V., et al.: Estimation of the surface tension of a solid: application to a liquid crystalline polymer. J. Coll. Interf. Sci 189, 361–369 (1997)

    Article  CAS  Google Scholar 

  29. Stauffer, C.E.: The measurement of surface tension by the pendant drop technique. J. Phys. Chem. 69, 1933–1938 (1965)

    Article  CAS  Google Scholar 

  30. Kwiatkowska, M., Franklin, S.E., Hendriks, C.P.: Friction and deformation behaviour of human skin. Wear 267, 1264–1273 (2009)

    Article  CAS  Google Scholar 

  31. Fung, Y.: Biomechanics: mechanical properties of living tissues, 2 edn. Springer, New York (2013)

    Google Scholar 

  32. Gregersen, H., Kassab, G.: Biomechanics of the gastrointestinal tract. Neurogastroenterol. Motil. 8, 277–297 (1996)

    Article  CAS  Google Scholar 

  33. Stachowiak, G., Batchelor, A.W.. Engineering tribology. Butterworth Heinemann, Oxford (2013)

    Google Scholar 

  34. Stupkiewicz, S., Lewandowski, M.J., Lengiewicz, J.: Micromechanical analysis of friction anisotropy in rough elastic contacts. Int. J. Solids Struct. 51, 3931–3943 (2014)

    Article  Google Scholar 

  35. Leyva-Mendivil, M.F., Lengiewicz, J., Page, A., et al.: Skin microstructure is a key contributor to its friction behaviour. Tribol. Lett. 65, 12 (2017)

    Article  Google Scholar 

  36. Derler, S., Huber, R., Feuz, H.P., et al.: Influence of surface microstructure on the sliding friction of plantar skin against hard substrates. Wear 267, 1281–1288 (2009)

    Article  CAS  Google Scholar 

  37. Moore, D.F.: The friction and lubrication of elastomers. Pergamon Press, Oxford (1972)

    Google Scholar 

  38. Wolfram, L.J.: Friction of skin. JSCC 34, 465 (1983)

    Google Scholar 

  39. Hendriks, C.P., Franklin, S.E.: Influence of surface roughness, material and climate conditions on the friction of human skin. Tribol. Lett. 37, 361–373 (2010)

    Article  CAS  Google Scholar 

  40. Gefen, A.: How do microclimate factors affect the risk for superficial pressure ulcers: a mathematical modeling study. J. Tissue Viability 20, 81–88 (2011)

    Article  Google Scholar 

  41. Sokolis, D.P., Kefaloyannis, E.M., Kouloukoussa, M., et al.: A structural basis for the aortic stress–strain relation in uniaxial tension. J. Biomech. 39, 1651–1662 (2006)

    Article  Google Scholar 

  42. Vanags, I., Petersons, A., Ose, V., et al.: Biomechanical properties of oesophagus wall under loading. J. Biomech. 36, 1387–1390 (2003)

    Article  Google Scholar 

  43. Derler, S., Gerhardt, L.C., Lenz, A.: Friction of human skin against smooth and rough glass as a function of the contact pressure. Tribol. Int. 42, 1565–1574 (2009)

    Article  Google Scholar 

  44. Tang, W., Ge, S., Zhu, H., et al.: The influence of normal load and sliding speed on frictional properties of skin. J. Bionic Eng. 5, 33–38 (2008)

    Article  Google Scholar 

  45. Tay, B.K., Kim, J., Srinivasan, M.A.: In vivo mechanical behavior of intra-abdominal organs. IEEE Trans. Biomed. Eng. 53, 2129–2138 (2006)

    Article  Google Scholar 

  46. Yang, W., Fung, T.C., Chian, K.S., et al.: Viscoelasticity of esophageal tissue and application of a QLV model. J. Biomech. Eng. 128, 909–916 (2006)

    Article  CAS  Google Scholar 

  47. Adams, M.J., Briscoe, B.J., Johnson, S.A.: Friction and lubrication of human skin. Tribol. Lett 26, 239–253 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 51675447 and No. 51290291).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C.X., Li, W., Deng, H.Y. et al. Friction Behavior of Esophageal Mucosa Under Axial and Circumferential Extension. Tribol Lett 67, 9 (2019). https://doi.org/10.1007/s11249-018-1123-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-1123-x

Keywords

Navigation