Skip to main content
Log in

Simulation of Sinuous Flow in Metal Cutting

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Sinuous flow is a recently discovered mode of unsteady plastic flow in the cutting of metal involving large plastic strains, extensive material folding, and consequences ranging from paradoxically large cutting forces to poor surface finish. Here we use full-scale simulations to show how sinuous flow, and the concomitant redundant plastic deformation in cutting, are caused by microstructure-related inhomogeneity. The computations are carried out in a Lagrangian continuum mechanics framework using a simple, but effective, pseudograin model to represent metal as a polycrystalline aggregate. Our simulations successfully capture all experimentally observed aspects of sinuous flow in metals, including highly undulating, non-laminar streaklines of flow in the chip, folds, and mushroom-like features, and severely deformed high aspect ratio grains. The simulations also shed light on the mechanism of sinuous flow, and the effect of deformation geometry, explaining why it is suppressed at high rake angles. We find that folding and sinuous flow can occur even at low friction, for grain sizes as small as 25–50 microns, and at very low-cutting speeds. Our study clearly points at the critical importance of incorporating microstructure in cutting simulations of pure metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. ‘Laminar’ is used here to describe flows in which the streaklines of flow are nearly parallel to each other, with no kinks or vortices. A streakline is the locus of all material points that passed through a given spatial location at some earlier time.

References

  1. Shaw, M.C.: Metal Cutting Principles. Oxford University Press, Oxford (2005)

    Google Scholar 

  2. Challen, J., Oxley, P.: An explanation of the different regimes of friction and wear using asperity deformation models. Wear 53, 229–243 (1979)

    Article  Google Scholar 

  3. Ernst, H.: Machining of Metals. American Society for Metals, Ohio (1938)

    Google Scholar 

  4. Merchant, M.E.: Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J. Appl. Phys. 16, 267–275 (1945)

    Article  Google Scholar 

  5. Field, M., Merchant, M.E.: Mechanics of formation of the discontinuous chip in metal cutting. Trans. Am. Soc. Mech. Eng. 71, 421 (1949)

    Google Scholar 

  6. Nakayama, K.: The formation of saw-toothed chip in metal cutting. Proc. Int. Conf. on Prod. Eng. 1, 572–577 (1974)

  7. Viswanathan, K., Udupa, A., Yeung, H., Sagapuram, D., Mann, J.B., Saei, M., Chandrasekar, S.: On the stability of plastic flow in cutting of metals. CIRP Ann. Manuf. Technol. 66, 69–72 (2017)

    Article  Google Scholar 

  8. Usui, E., Gujral, A., Shaw, M.C.: An experimental study of the action of CCl4 in cutting and other processes involving plastic flow. Int. J. Mach. Tool D. R. 1, 187–197 (1961)

    Article  Google Scholar 

  9. Williams, J.E., Smart, E.F., Milner, D.R.: Metallurgy of machining. Pt. 1. Basic considerations and the cutting of pure metals. Metallurgia 81, 3–10 (1970)

    Google Scholar 

  10. Cook, N., Finnie, I., Shaw, M.: Discontinuous chip formation. Trans. ASME 76, 153 (1954)

    Google Scholar 

  11. Komanduri, R., Brown, R.: On the mechanics of chip segmentation in machining. J. Eng. Ind. 103, 33–51 (1981)

    Article  Google Scholar 

  12. Semiatin, S., Rao, S.: Shear localization during metal cutting. Mat. Sci. Eng. 61, 185–192 (1983)

    Article  Google Scholar 

  13. Molinari, A., Soldani, X., Miguélez, M.: Adiabatic shear banding and scaling laws in chip formation with application to cutting of Ti-6Al-4V. J. Mech. Phys. Solids 61, 2331–2359 (2013)

    Article  Google Scholar 

  14. Yeung, H., Viswanathan, K., Compton, W.D., Chandrasekar, S.: Sinuous flow in metals. Proc. Nat. Acad. Sci. USA 112, 9828–9832 (2015)

    Article  Google Scholar 

  15. Trent, E.M., Wright, P.K.: Metal Cutting. Butterworth-Heinemann, Oxford (2000)

    Google Scholar 

  16. Udupa, A., Viswanathan, K., Ho, Y., Chandrasekar, S.: The cutting of metals via plastic buckling. Proc. R. Soc. A 473, 20160863 (2017)

    Article  Google Scholar 

  17. Ramalingam, S., Doyle, E., Turley, D.: On chip curl in orthogonal machining. J. Eng. Ind. 102, 177–183 (1980)

    Article  Google Scholar 

  18. Komanduri, R., Von Turkovich B.F.: New observations on the mechanism of chip formation when machining titanium alloys. Wear 69, 179–188 (1981)

    Article  Google Scholar 

  19. Sundaram, N.K., Guo, Y., Chandrasekar, S.: Mesoscale folding, instability, and disruption of laminar flow in metal surfaces. Phys. Rev. Lett. 109, 106001 (2012)

    Article  Google Scholar 

  20. Vandana, A.S., Sundaram, N.K.: Interaction of a sliding wedge with a metallic substrate containing a single inhomogeneity. Trib. Lett. 65, 124 (2017)

    Article  Google Scholar 

  21. Sundaram, N.K., Mahato, A., Guo, Y., Viswanathan, K., Chandrasekar, S.: Folding in metal polycrystals: Microstructural origins and mechanics. Acta Mater. 140C, 67–78 (2017)

    Article  Google Scholar 

  22. Strenkowski, J.S., Carroll, J.T.: A finite element model of orthogonal metal cutting. J. Eng. Ind. 107, 349–354 (1985)

    Article  Google Scholar 

  23. Marusich, T., Ortiz, M.: Modelling and simulation of high-speed machining. Int. J. Numer. Meth. Eng. 38, 3675–3694 (1995)

    Article  Google Scholar 

  24. Chuzhoy, L., DeVor, R., Kapoor, S., Bammann, D.: Microstructure-level modeling of ductile iron machining. J. Manuf. Sci. Eng. 124, 162–169 (2002)

    Article  Google Scholar 

  25. Chuzhoy, L., DeVor, R., Kapoor, S.: Machining simulation of ductile iron and its constituents, Part 2: Numerical simulation and experimental validation of machining. J. Manuf. Sci. Eng. 125, 192–201 (2003)

    Article  Google Scholar 

  26. Simoneau, E., Ng, Elbestawi, M.: Surface defects during microcutting. Int. J. Mach. Tool. Manuf. 46, 1378–1387 (2006)

    Article  Google Scholar 

  27. Ashby, M.: The deformation of plastically non-homogeneous materials. Philos. Mag. 21, 399–424 (1970)

    Article  Google Scholar 

  28. Harren, S., Asaro, R.: Nonuniform deformations in polycrystals and aspects of the validity of the Taylor model. J. Mech. Phys. Solids 37, 191–232 (1989)

    Article  Google Scholar 

  29. Huang, J.M., Black, J.T.: An evaluation of chip separation criteria for the FEM simulation of machining. J. Manuf. Sci. E 118, 545–554 (1996)

    Article  Google Scholar 

  30. Subbiah, S., Melkote, S.N.: Evidence of ductile tearing ahead of the cutting tool and modeling the energy consumed in material separation in micro-cutting. J. Eng. Mater. Technol. 129, 321–331 (2007)

    Article  Google Scholar 

  31. Johnson, G.R., Cook, W.H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics 21, 541–547 (1983)

  32. Armstrong, P.E., Hockett, J.E., Sherby, O.: Large strain multidirectional deformation of 1100 aluminum at 300 K. J. Mech. Phys. Solids 30, 37–58 (1982)

    Article  Google Scholar 

  33. Lindholm, U.S.: Some experiments with the split Hopkinson pressure bar. J. Mech. Phys. Solids 12, 317–335 (1964)

    Article  Google Scholar 

  34. Vachhani, S.J., Kalidindi, S.R.: Grain-scale measurement of slip resistances in aluminum polycrystals using spherical nanoindentation. Acta Mater. 90, 27–36 (2015)

    Article  Google Scholar 

  35. Lemaitre, J.: A continuous damage mechanics model for ductile fracture. J. Eng. Mater. 107, 83–89 (1985)

    Google Scholar 

  36. Atkins, A.G.: Modelling metal cutting using modern ductile fracture mechanics: quantitative explanations for some longstanding problems. Int. J. Mech. Sci. 45, 373–396 (2003)

    Article  Google Scholar 

  37. Dassault-Systemes: Abaqus Analysis User Manual. Dassault Systemes Simulia Corporation, Providence (2012)

    Google Scholar 

  38. Chung, W.J., Cho, J.W., Belytschko, T.: On the dynamic effects of explicit FEM in sheet metal forming analysis. Eng. Comput. 15, 750–776 (1998)

    Article  Google Scholar 

  39. Melkote, S.N., Grzesik, W., Outeiro, J., Rech, J., Schulze, V., Attia, H., Arrazola, P.-J., MSaoubi, R., Saldana, C.: Advances in material and friction data for modelling of metal machining. CIRP Ann. 66, 731–754 (2017)

    Article  Google Scholar 

  40. Okushima, K., Hitomi, K.: On the Cutting Mechanism for Soft Metals. Mem. Fac. Eng. 19, 135–166 (1957)

    Google Scholar 

  41. A.Molinari and Moufki, A.: The Merchant’s model of orthogonal cutting revisited: A new insight into the modeling of chip formation. Int. J. Mech. Sci. 50, 124–131 (2008)

    Article  Google Scholar 

  42. Childs, T.H.C.: Friction modelling in metal cutting. Wear 260, 310–318 (2006)

    Article  Google Scholar 

  43. Hill, R.: The mechanics of machining: A new approach. J. Mech. Phys. Solids 3, 47–53 (1954)

    Article  Google Scholar 

  44. Dewhurst, P.: On the non-uniqueness of the machining process. Proc. R. Soc. A 360, 587–610 (1978)

    Article  Google Scholar 

  45. Hansen, N., Jensen, D.J.: Development of microstructure in FCC metals during cold work. Philos. Trans. R. Soc. A 357, 1447–1469 (1999)

    Article  Google Scholar 

  46. Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D.D., Bieler, T.R., Raabe, D.: Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Mater. 58, 1152–1211 (2010)

    Article  Google Scholar 

  47. Madhavan, V., Chandrasekar, S., Farris, T.: Machining as a wedge indentation. J. Appl. Mech. 67, 128–139 (2000)

    Article  Google Scholar 

  48. Beckmann, N., Romero, P., Linsler, D., Dienwiebel, M., Stolz, U., Moseler, M., Gumbsch, P.: Origins of folding instabilities on polycrystalline metal surfaces. Phys. Rev. Appl. 2, 064004 (2014)

    Article  Google Scholar 

  49. Li, Szlufarska, I.: How grain size controls friction and wear in nanocrystalline metals. Phys. Rev. B 92, 075418 (2015)

    Article  Google Scholar 

  50. Guo, Y., M’Saoubi, R., Chandrasekar, S.: Control of deformation levels on machined surfaces. CIRP Ann. 60, 137–140 (2011)

    Article  Google Scholar 

  51. Komanduri, R., Schroeder, T., Hazra, J., Von Turkovich, B., Flom, D.: On the catastrophic shear instability in high-speed machining of an AISI 4340 steel. J. Eng. Ind. 104, 121–131 (1982)

    Article  Google Scholar 

  52. Davies, M.A., Burns, T.J., Evans, C.J.: On the dynamics of chip formation in machining hard metals. CIRP Ann. 46, 25–30 (1997)

    Article  Google Scholar 

  53. Mann, J., Guo, Y., Saldana, C., Compton, W., Chandrasekar, S.: Enhancing material removal processes using modulation-assisted machining. Tribol. Int. 44, 1225–1235 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. S. Chandrasekar and Dr. K. Viswanathan of the Center for Materials Processing and Tribology, Purdue University, for sharing experimental images for Figs. 5 and 6c.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayan K. Sundaram.

Electronic supplementary material

Links to the electronic supplementary material are given below.

Supplementary material 1 (PDF 672 KB)

Supplementary material 2 (MP4 3353 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandana, A.S., Sundaram, N.K. Simulation of Sinuous Flow in Metal Cutting. Tribol Lett 66, 94 (2018). https://doi.org/10.1007/s11249-018-1047-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-1047-5

Keywords

Navigation