Skip to main content
Log in

Synergistic Effects of Carbon Nanotube/Nano-MoS2 Hybrid on Tribological Performance of Polyimide Nanocomposite Films

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Modified carbon nanotube/nano-MoS2 (CMS) hybrid as a self-lubricating and anti-wear nanofiller was prepared through chemical compounding and then incorporated into polyimide (PI) matrix to yield CMS/PI composite by in situ polymerization. For comparison, carbon nanotube (CNT), nano-MoS2 as well as the mixture of them (CNT-MoS2) were also incorporated into PI matrix separately to evaluate the superior performance of CMS hybrid. Morphology, mechanical capacity and tribological behavior of the as-prepared nanocomposites were investigated, and the discrepancies on the above-mentioned properties caused by the different structures between CMS hybrid and CNT-MoS2 mixture were discussed in detail. With only 0.5 wt% addition of CMS, the friction coefficient and wear rate of CMS/PI composite decreased by 31 and 84%, respectively, compared to virgin PI. The results showed that the combinational structure of CMS hybrid, as CNT-coated few-layer MoS2 nanosheet, which took the advantage of both CNT and nano-MoS2, contributed to the synergistic effect on the tribological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Tjong, S.C.: Structural and mechanical properties of polymer nanocomposites. Mater. Sci. Eng. R-Rep. 53, 73–197 (2006)

    Article  Google Scholar 

  2. Hanemann, T., Szabo, D.V.: Polymer-nanoparticle composites: from synthesis to modern applications. Materials 3, 3468–3517 (2010)

    Article  Google Scholar 

  3. Su, F.H., Zhang, S.H.: Tribological properties of polyimide coatings filled with PTFE and surface-modified nano-Si3N4. J. Appl. Polym. Sci. 131, 40410 (2014)

    Google Scholar 

  4. Yoonessi, M., Gaier, J.R.: Highly conductive multifunctional graphene polycarbonate nanocomposites. ACS Nano 4, 7211–7220 (2010)

    Article  Google Scholar 

  5. Chauhan, S.R., Thakur, S.: Effects of particle size, particle loading and sliding distance on the friction and wear properties of cenosphere particulate filled vinylester composites. Mater. Des. 51, 398–408 (2013)

    Article  Google Scholar 

  6. Chen, Y.C., Lin, H.C., Lee, Y.D.: The effects of filler content and size on the properties of PTFE/SiO2 composites. J. Polym. Res. 10, 247–258 (2003)

    Article  Google Scholar 

  7. Samyn, P., De Baets, P., Schoukens, G., Hendrickx, B.: Tribological behavior of pure and graphite-filled polyimides under atmospheric conditions. Polym. Eng. Sci. 43, 1477–1487 (2003)

    Article  Google Scholar 

  8. Samyn, P., Schoukens, G.: Tribological properties of PTFE-filled thermoplastic polyimide at high load, velocity, and temperature. Polym. Compos. 30, 1631–1646 (2009)

    Article  Google Scholar 

  9. Huang, T., Lu, R., Wang, H., Ma, Y., Tian, J., Li, T.: Investigation on the tribological properties of POM modified by nano-PTFE. J. Macromol. Sci. B Phys. 50, 1235–1248 (2011)

    Article  Google Scholar 

  10. Zin, V., Barison, S., Agresti, F., Colla, L., Pagura, C., Fabrizio, M.: Improved tribological and thermal properties of lubricants by graphene based nano-additives. RSC Adv. 6, 59477–59486 (2016)

    Article  Google Scholar 

  11. Diez-Pascual, A.M., Diez-Vicente, A.L.: Nano-TiO2 reinforced PEEK/PEI blends as biomaterials for load-bearing implant applications. ACS Appl. Mater. Interfaces 7, 5561–5573 (2015)

    Article  Google Scholar 

  12. Huang, T., Xin, Y.S., Li, T.S., Nutt, S., Su, C., Chen, H.M., et al.: Modified graphene/polyimide nanocomposites: reinforcing and tribological effects. ACS Appl. Mater. Interfaces 5, 4878–4891 (2013)

    Article  Google Scholar 

  13. Shi, Y., Mu, L., Feng, X., Lu, X.: Tribological behavior of carbon nanotube and polytetrafluoroethylene filled polyimide composites under different lubricated conditions. J. Appl. Polym. Sci. 121, 1574–1578 (2011)

    Article  Google Scholar 

  14. Xu, Z.Y., Xu, Y., Hu, K.H., Xu, Y.F., Hu, X.G.: Formation and tribological properties of hollow sphere-like nano-MoS2 precipitated in TiO2 particles. Tribol. Int. 81, 139–148 (2015)

    Article  Google Scholar 

  15. Xin, Y.S., Li, T.S., Gong, D.F., Xu, F.L., Wang, M.M.: Preparation and tribological properties of graphene oxide/nano-MoS2 hybrid as multidimensional assembly used in the polyimide nanocomposites. RSC Adv. 7, 6323–6335 (2017)

    Article  Google Scholar 

  16. Xin, Y.S., Li, T.S., Xu, F.L., Wang, M.M.: Multidimensional structure and enhancement performance of modified graphene/carbon nanotube assemblies in tribological properties of polyimide nanocomposites. RSC Adv. 7, 20742–20753 (2017)

    Article  Google Scholar 

  17. Huang, T., Li, T.S., Xin, Y.S., Jin, B.C., Chen, Z.X., Su, C., et al.: Preparation and utility of a self-lubricating & anti-wear graphene oxide/nano-polytetrafluoroethylene hybrid. RSC Adv. 4, 19814–19823 (2014)

    Article  Google Scholar 

  18. Chen, Z.Y., Yan, H.X., Liu, T.Y., Niu, S.: Nanosheets of MoS2 and reduced graphene oxide as hybrid fillers improved the mechanical and tribological properties of bismaleimide composites. Compos. Sci. Technol. 125, 47–54 (2016)

    Article  Google Scholar 

  19. Hu, K.H., Huang, F., Hu, X.G., Xu, Y.F., Zhou, Y.Q.: Synergistic effect of nano-MoS2 and anatase nano-TiO2 on the lubrication properties of MoS2/TiO2 nano-clusters. Tribol. Lett. 43, 77–87 (2011)

    Article  Google Scholar 

  20. Breuer, O., Sundararaj, U.: Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym. Compos. 25, 630–645 (2004)

    Article  Google Scholar 

  21. Cho, M.: The flexural and tribological behavior of multi-walled carbon nanotube-reinforced polyphenylene sulfide composites. Mater. Trans. 49, 2801–2807 (2008)

    Article  Google Scholar 

  22. Gandhi, R.A., Palanikumar, K., Ragunath, B.K., Davim, J.P.: Role of carbon nanotubes (CNTs) in improving wear properties of polypropylene (PP) in dry sliding condition. Mater. Des. 48, 52–57 (2013)

    Article  Google Scholar 

  23. Charitidis, C.A., Koumoulos, E.P., Giorcelli, M., Musso, S., Jagadale, P., Tagliaferro, A.: Nanomechanical and Tribological properties of carbon nanotube/polyvinyl butyral composites. Polym. Compos. 34, 1950–1960 (2013)

    Article  Google Scholar 

  24. Satyanarayana, N., Rajan, K.S.S., Sinha, S.K., Shen, L.: Carbon nanotube reinforced polyimide thin-film for high wear durability. Tribol. Lett. 27, 181–188 (2007)

    Article  Google Scholar 

  25. Ribeiro, R., Banda, S., Ounaies, Z., Ucisik, H., Usta, M., Liang, H.: A tribological and biomimetic study of PI-CNT composites for cartilage replacement. J. Mater. Sci. 47, 649–658 (2012)

    Article  Google Scholar 

  26. Lee, C., Yan, H., Brus, L.E., Heinz, T.F., Hone, J., Ryu, S.: Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4, 2695–2700 (2010)

    Article  Google Scholar 

  27. Rao, C.N.R., Nag, A.: Inorganic analogues of graphene. Eur. J. Inorg. Chem. 27, 4244–4250 (2010)

    Article  Google Scholar 

  28. Zhou, W., Zou, X., Najmaei, S., Liu, Z., Shi, Y., Kong, J., et al.: Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615–2622 (2013)

    Article  Google Scholar 

  29. Peng, S.G., Niu, Y.P., Fan, X.J.: Enhancement of mechanical and tribological properties in ring-opening metathesis polymerization functionalized molybdenum disulfide/polydicyclopentadiene nanocomposites. J. Appl. Polym. Sci. 129, 1045–1052 (2013)

    Article  Google Scholar 

  30. Tang, G., Zhang, J., Liu, C., Zhang, D., Wang, Y., Tang, H., et al.: Synthesis and tribological properties of flower-like MoS2 microspheres. Ceram. Int. 40, 11575–11580 (2014)

    Article  Google Scholar 

  31. Xu, Y.S., Ji, K.J., Huang, Z.G., Zhao, H.H., Dai, Z.D.: Tribological behaviors of foamed copper/epoxy resin composites augmented by molybdenum disulfide and multi-walled carbon nanotubes. Proc. Inst. Mech. Eng. J. -J. Eng. Tribol. 228, 558–566 (2014)

    Article  Google Scholar 

  32. Chen, Z.Y., Yan, H.X., Liu, T.Y., Niu, S., Ma, J.Y.: Improved mechanical and tribological properties of bismaleimide composites by surface-functionalized reduced graphene oxide and MoS2 coated with cyclotriphosphazene polymer. RSC Adv. 5, 97883–97890 (2015)

    Article  Google Scholar 

  33. Moghadam, A.D., Omrani, E., Menezes, P.L., Rohatgi, P.K.: Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene—a review. Compos. B 77, 402–420 (2015)

    Article  Google Scholar 

  34. Sroog, C.E.: Polyimides. Prog. Polym. Sci. 16, 561–694 (1991)

    Article  Google Scholar 

  35. Li, J.C., Zhang, Y.P., Zhang, S., Huang, X.D.: Sulfonated polyimide/s-MoS2 composite membrane with high proton selectivity and good stability for vanadium redox flow battery. J. Membr. Sci. 490, 179–189 (2015)

    Article  Google Scholar 

  36. Frey, G.L., Tenne, R., Matthews, M.J., Dresselhaus, M.S., Dresselhaus, G.: Raman and resonance Raman investigation of MoS2 nanoparticles. Phys. Rev. B 60, 2883–2892 (1999)

    Article  Google Scholar 

  37. Dresselhaus, M.S., Dresselhaus, G., Hofmann, M.: Raman spectroscopy as a probe of graphene and carbon nanotubes. Philos. Trans. R. Soc. A 366, 231–236 (2008)

    Article  Google Scholar 

  38. Huang, T., Lu, R., Su, C., Wang, H., Guo, Z., Liu, P., et al.: Chemically modified graphene/polyimide composite films based on utilization of covalent bonding and oriented distribution. ACS Appl. Mater. Interfaces 4, 2699–2708 (2012)

    Article  Google Scholar 

  39. Brostow, W., Lobland, H.E.H., Narkis, M.: Sliding wear, viscoelasticity, and brittleness of polymers. J. Mater. Res. 21, 2422–2428 (2006)

    Article  Google Scholar 

  40. Loy, X.Z.K., Sinha, S.K.: Lubrication of polyether ether ketone (PEEK) surface by liquid ultrathin films for high wear durability. Wear 296, 681–692 (2012)

    Article  Google Scholar 

  41. Liu, J., Tang, J., Gooding, J.J.: Strategies for chemical modification of graphene and applications of chemically modified graphene. J. Mater. Chem. 22, 12435–12452 (2012)

    Article  Google Scholar 

  42. Mo, M.T., Zhao, W.J., Chen, Z.F., Yu, Q.X., Zeng, Z.D., Wu, X.J., et al.: Excellent tribological and anti-corrosion performance of polyurethane composite coatings reinforced with functionalized graphene and graphene oxide nanosheets. RSC Adv. 5, 56486–56497 (2015)

    Article  Google Scholar 

  43. Lai, S.Q., Li, T.S., Wang, F.D., Li, X.J., Yue, L.: The effect of silica size on the friction and wear behaviors of polyimide/silica hybrids by sol-gel processing. Wear 262, 1048–1055 (2007)

    Article  Google Scholar 

  44. Zhang, Y.B., Li, C.H., Jia, D.Z., Zhang, D.K., Zhang, X.W.: Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Ni-based alloy grinding. Int. J. Mach. Tools Manuf. 99, 19–33 (2015)

    Article  Google Scholar 

  45. Shen, X.J., Pei, X.Q., Liu, Y., Fu, S.Y.: Tribological performance of carbon nanotube-graphene oxide hybrid/epoxy composites. Compos. B 57, 120–125 (2014)

    Article  Google Scholar 

  46. Samyn, P., Schoukens, G., Verpoort, F., Van Craenenbroeck, J., De Baets, P.: Friction and wear mechanisms of sintered and thermoplastic polyimides under adhesive sliding. Macromol. Mater. Eng. 292, 523–556 (2007)

    Article  Google Scholar 

  47. Huang, T., Liu, P., Lu, R., Huang, Z., Chen, H., Li, T.: Modification of polyetherimide by phenylethynyl terminated agent for improved tribological, macro- and micro-mechanical properties. Wear 292, 25–32 (2012)

    Article  Google Scholar 

  48. Samad, M.A., Sinha, S.K.: Effects of counterface material and UV radiation on the tribological performance of a UHMWPE/CNT nanocomposite coating on steel substrates. Wear 271, 2759–2765 (2011)

    Article  Google Scholar 

  49. Yang, X.L., Zhan, Y.Q., Yang, J., Zhong, J.C., Zhao, R., Liu, X.B.: Synergetic effect of cyanogen functionalized carbon nanotube and graphene on the mechanical and thermal properties of poly (arylene ether nitrile). J. Polym. Res. 19, 6 (2012)

    Article  Google Scholar 

  50. Tanaka, K., Uchiyama, Y., Toyooka, S.: Mechanism of wear of fluoroethylene. Wear 23, 153–172 (1973)

    Article  Google Scholar 

  51. Yi, G.W., Yan, F.Y.: Mechanical and tribological properties of phenolic resin-based friction composites filled with several inorganic fillers. Wear 262, 121–129 (2007)

    Article  Google Scholar 

  52. Kandanur, S.S., Rafiee, M.A., Yavari, F., Schrameyer, M., Yu, Z.-Z., Blanchet, T.A., et al.: Suppression of wear in graphene polymer composites. Carbon 50, 3178–3183 (2012)

    Article  Google Scholar 

  53. Chen, Y., Zhang, Y.M., Liu, Y.: Multidimensional nanoarchitectures based on cyclodextrins. Chem. Commun. 46, 5622–5633 (2010)

    Article  Google Scholar 

  54. Liu, S.Q., Tang, Z.Y.: Nanoparticle assemblies for biological and chemical sensing. J. Mater. Chem. 20, 24–35 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Basic Research Program of China (Grant No. 2011CB605704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongsheng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, Y., Xu, F., Wang, M. et al. Synergistic Effects of Carbon Nanotube/Nano-MoS2 Hybrid on Tribological Performance of Polyimide Nanocomposite Films. Tribol Lett 66, 25 (2018). https://doi.org/10.1007/s11249-017-0977-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-017-0977-7

Keywords

Navigation