Skip to main content
Log in

Wear and Lubrication Behaviors of Cu-Based Friction Pairs with Asperity Contacts: Numerical and Experimental Studies

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

This paper aims to investigate the wear and lubrication behaviors of wet Cu-based friction pairs. A mixed lubrication model in plane contacts is developed, and the tests of pin-on-disk are carried out. Wear losses are measured by the oil spectrum analysis method. The wear loss, the real contact area ratio, and the load sharing ratio are analyzed. Effects of sliding velocity, temperature, and pressure are considered. The results show that the temperature is the most significant influence on the wear loss of lubricated Cu-based friction pairs. As the temperature rises from 30 to 150 °C, wear loss increases from less than 0.4 mg to about 2.3 mg. The wear factor of the lubricated Cu-based friction pair in asperity contact areas is \(K_{c} = 9.4 \times 10^{ - 9}\) (g/Nm). When the lubricated wear is slight, the oil spectrum analysis method is an effective approach to accurately determine the wear loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

a :

Half length of solution domain

A :

Nominal contact area

A c :

Real contact area

c s :

Specific heat capacity

E :

Young’s modulus

E′ :

Effective Young’s modulus

h :

Local film thickness

h a :

Average central film thickness

h o :

Minimum local film thickness

L :

Load

L l :

Load supported by hydrodynamic film

L c :

Load supported by asperity contacts

p l :

Hydrodynamic pressure

p c :

Asperity contact pressure

R a :

Asperity height

S q :

Root mean square (RMS) surface roughness

T :

Local Kelvin temperature

ΔT :

Local temperature rise

u :

Relative sliding velocity

ξ :

Surface deformation

W :

Wear loss

x, y :

Coordinates

α s :

Thermal diffusivity

ϕ A :

A c /A, contact area ratio

ϕ L :

L c /L, load sharing ratio of asperity contact

η :

Lubricant viscosity

η o :

Ambient lubricant viscosity

λ :

h a /σ, film thickness ratio

ρ :

Density of lubricant

ρ o :

Ambient density of lubricant

υ :

Poisson’s ratio

References

  1. Rhee, S.K.: Wear equation for polymers sliding against metal surfaces. Wear 16(6), 431–445 (1970)

    Article  Google Scholar 

  2. Archard, J.F.: Contact and rubbing of flat surfaces. J. Appl. Phys. 24(8), 981–988 (1953)

    Article  Google Scholar 

  3. Quinn, T.F.J.: Oxidational wear. Wear 18(5), 413–419 (1971)

    Article  Google Scholar 

  4. Christensen, H.: Stochastic models for hydrodynamic lubrication of rough surfaces. Proc. Inst. Mech. Eng. 184(1), 1013–1026 (1969)

    Article  Google Scholar 

  5. Tallian, T.E.: The theory of partial elastohydrodynamic contacts. Wear 21(1), 49–101 (1972)

    Article  Google Scholar 

  6. Tønder, K.: Mathematical verification of the applicability of modified Reynolds equations to striated rough surfaces. Wear 44(2), 329–343 (1977)

    Article  Google Scholar 

  7. Patir, N., Cheng, H.S.: An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication. J. Lubr. Technol. 100(1), 12–17 (1978)

    Article  Google Scholar 

  8. Lubrecht, A.A., Ten Napel, W.E., Bosma, R.: The influence of longitudinal and transverse roughness on the elastohydrodynamic lubrication of circular contacts. J. Tribol. 110(3), 421–426 (1988)

    Article  Google Scholar 

  9. Chang, L., Webster, M.N.: A study of elastohydrodynamic lubrication of rough surfaces. J. Tribol. 113(1), 110–115 (1991)

    Article  Google Scholar 

  10. Ai, X., Cheng, H.S.: The influence of moving dent on point EHL contacts. Tribol. Trans. 37(2), 323–335 (1994)

    Article  Google Scholar 

  11. Venner, C.H., Lubrecht, A.A.: Numerical analysis of the influence of waviness on the film thickness of a circular EHL contact. J. Tribol. 118(1), 153–161 (1996)

    Article  Google Scholar 

  12. Hu, Y.Z., Zhu, D.: A full numerical solution to the mixed lubrication in point contacts. J. Tribol. 122(1), 1–9 (2000)

    Article  Google Scholar 

  13. Hu, Y.Z., Wang, H., Wang, W.Z., et al.: A computer model of mixed lubrication in point contacts. Tribol. Int. 34(1), 65–73 (2001)

    Article  Google Scholar 

  14. Zhu, D., Martini, A., Wang, W., et al.: Simulation of sliding wear in mixed lubrication. J. Tribol. 129(3), 544–552 (2007)

    Article  Google Scholar 

  15. Zhu, D., Wang, J., Wang, Q.J.: On the Stribeck curves for lubricated counterformal contacts of rough surfaces. J. Tribol. 137(2), 021501 (2015)

    Article  Google Scholar 

  16. Wang, Y., Wang, Q.J., Lin, C., et al.: Development of a set of Stribeck curves for conformal contacts of rough surfaces. Tribol. Trans. 49(4), 526–535 (2006)

    Article  Google Scholar 

  17. Beheshti, A., Khonsari, M.M.: An engineering approach for the prediction of wear in mixed lubricated contacts. Wear 308(1), 121–131 (2013)

    Article  Google Scholar 

  18. Masjedi, M., Khonsari, M.M.: On the effect of surface roughness in point-contact EHL: Formulas for film thickness and asperity load. Tribol. Int. 82, 228–244 (2015)

    Article  Google Scholar 

  19. Lu, X., Khonsari, M.M.: An experimental investigation of dimple effect on the stribeck curve of journal bearings. Tribol. Lett. 27(2), 169 (2007)

    Article  Google Scholar 

  20. Akbarzadeh, S., Khonsari, M.M.: Thermoelastohydrodynamic analysis of spur gears with consideration of surface roughness. Tribol. Lett. 32(2), 129–141 (2008)

    Article  Google Scholar 

  21. Kovalchenko, A., Ajayi, O., Erdemir, A., et al.: Friction and wear behavior of laser textured surface under lubricated initial point contact. Wear 271(9), 1719–1725 (2011)

    Article  Google Scholar 

  22. Andersson, J., Almqvist, A., Larsson, R.: Numerical simulation of a wear experiment. Wear 271(11), 2947–2952 (2011)

    Article  Google Scholar 

  23. Wang, X., Kwon, P.Y., Schrock, D.: Friction coefficient and sliding wear of AlTiN coating under various lubrication conditions. Wear 304(1), 67–76 (2013)

    Article  Google Scholar 

  24. Profito, F.J., Tomanik, E., Zachariadis, D.C.: Effect of cylinder liner wear on the mixed lubrication regime of TLOCRs. Tribol. Int. 93, 723–732 (2016)

    Article  Google Scholar 

  25. Checo, H.M., Jaramillo, A., Ausas, R.F., Buscaglia, G.C.: The lubrication approximation of the friction force for the simulation of measured surfaces. Tribol. Int. 97, 390–399 (2016)

    Article  Google Scholar 

  26. Ghanbarzadeh, A., Wilson, M., Morina, A., et al.: Development of a new mechano-chemical model in boundary lubrication. Tribol. Int. 93, 573–582 (2016)

    Article  Google Scholar 

  27. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in, Solids2nd edn, pp. 266–270. Clarendon Press, Oxford (1959)

    Google Scholar 

  28. Liu, Y.C., Wang, H., Wang, W.Z., et al.: Methods comparison in computation of temperature rise on frictional interfaces. Tribol. Int. 35(8), 549–560 (2002)

    Article  Google Scholar 

  29. Bair, S., Winer, W.O.: A rheological model for elastohydrodynamic contacts based on primary laboratory data. J. Lubr. Technol. 101(3), 258–264 (1979)

    Article  Google Scholar 

  30. Houpert, L., Flamand, L., Berthe, D.: Rheological and thermal effects in lubricated EHD contacts. J. Lubr. Technol. 103(4), 526–532 (1981)

    Google Scholar 

  31. Houpert, L.: New results of traction force calculations in elastohydrodynamic contacts. ASME J. Tribol 107(2), 241–248 (1985)

    Article  Google Scholar 

  32. Wong, P.L., Wang, R., Lingard, S.: Pressure and temperature dependence of the density of liquid lubricants. Wear 201(1), 58–63 (1996)

    Article  Google Scholar 

  33. Akbarzadeh, S., Khonsari, M.M.: On the optimization of running-in operating conditions in applications involving EHL line contact. Wear 303(1), 130–137 (2013)

    Article  Google Scholar 

  34. Wang, W.Z., Wang, H., Hu, Y.Z.: Fast computation of surface deformation in lubricated contact. Tribol. Beijing 22(5), 390–394 (2002)

    Google Scholar 

  35. Liu, Y.C., Wang, Q.J., Wang, W.Z., et al.: Effects of differential scheme and mesh density on EHL film thickness in point contacts. J. Tribol. 128(3), 641–653 (2006)

    Article  Google Scholar 

  36. Wang, W., Hu, Y., Liu, Y., et al.: Deterministic solutions and thermal analysis for mixed lubrication in point contacts. Tribol. Int. 40(4), 687–693 (2007)

    Article  Google Scholar 

  37. Jiang, X., Hua, D.Y., Cheng, H.S., et al.: A mixed elastohydrodynamic lubrication model with asperity contact. J. Tribol. 121(3), 481–491 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by National Natural Science Foundation of China (Grant No. 51575042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He-Yan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, EH., Ma, B. & Li, HY. Wear and Lubrication Behaviors of Cu-Based Friction Pairs with Asperity Contacts: Numerical and Experimental Studies. Tribol Lett 65, 69 (2017). https://doi.org/10.1007/s11249-017-0852-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-017-0852-6

Keywords

Navigation