Skip to main content
Log in

Graphitic Carbon Films Across Systems

  • Review
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

When metal surfaces come into contact, lubricants are used to overcome friction. Various forms of hydrocarbons play a central role in lubrication, through both liquid lubricants and surface coatings. Solid lubricants like graphite and complex surface coatings such as diamond-like carbon have led to great advancements in friction mitigation. In addition to these designed carbon films, unintentional carbon films can also spontaneously form during metal–metal sliding. Here, we analyze various systems that produce carbon films, focusing on systems with cyclical metal sliding, hydrocarbon lubricants, and catalytic activity. The systems we analyze include friction polymers, diamond-like carbon coatings, varnish from industrial machines, metal-on-metal hip implants, microelectromechanical systems, and catalysis coke. These films, analyzed at the nanoscale, are primarily graphitic carbon with local regions of sp2 bonding. The graphitic carbon can act as a lubricant in some systems and not in others. Through comparing these various fields, we seek to better understand the formation, evolution, and friction properties of carbon films. Through design and control of carbon films formation, we can control triboactivity to improve system performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gangopadhyay, A., McWatt, D., Zdrodowski, R., Liu, Z., Elie, L., Simko, S., Erdemir, A., Ramirez, G., Cuthbert, J., Hock, E.: Development of modified PAG (polyalkylene glycol) high VI high fuel efficient lubricant for LDV applications (2014)

  2. Tanner, D.M., Smith, N.F., Irwin, L.W., Eaton, W.P., Helgesen, K.S., Clement, J.J., Miller, W.M., Miller, S.L., Dugger, M.T., Walraven, J.A.: MEMS reliability: infrastructure, test structures, experiments, and failure modes. In: Sandia National Labs., Albuquerque, NM (US); Sandia National Labs., Livermore, CA (US) (2000)

  3. Hsu, S.M., Gates, R.S.: Effect of materials on tribochemical reactions between hydrocarbons and surfaces. J. Phys. D Appl. Phys. 39(15), 3128–3137 (2006). doi:10.1088/0022-3727/39/15/S02

    Article  Google Scholar 

  4. Hermance, H.W., Egan, T.F.: Organic deposits on precious metal contacts. Bell Syst. Tech. J. 37(3), 739–776 (1958). doi:10.1002/j.1538-7305.1958.tb03885.x

    Article  Google Scholar 

  5. Antler, M.: Tribology of metal coatings for electrical contacts. Thin Solid Films 84(3), 245–256 (1981). doi:10.1016/0040-6090(81)90022-5

    Article  Google Scholar 

  6. Furey, M.J.: The formation of polymeric films directly on rubbing surfaces to reduce wear. Wear 26(3), 369–392 (1973). doi:10.1016/0043-1648(73)90188-9

    Article  Google Scholar 

  7. Gates, R.S., Jewett, K.L., Hsu, S.M.: A study on the nature of boundary lubricating film: analytical method development. Tribol. Trans. 32(4), 423–430 (1989). doi:10.1080/10402008908981909

    Article  Google Scholar 

  8. Hsu, S.M.: Fundamental mechanisms of friction and lubrication of materials. Langmuir 12(19), 4482–4485 (1996). doi:10.1021/la9508856

    Article  Google Scholar 

  9. Morecroft, D.W.: Reactions of octadecane and decoic acid with clean iron surfaces. Wear 18(4), 333–339 (1971). doi:10.1016/0043-1648(71)90076-7

    Article  Google Scholar 

  10. Chaikin, S.W.: On frictional polymer. Wear 10(1), 49 (1967). doi:10.1016/0043-1648(67)90106-8

    Article  Google Scholar 

  11. Mori, S., Imaizumi, Y.: Adsorption of model compounds of lubricant on nascent surfaces of mild and stainless steels under dynamic conditions. Tribol. Trans. 31(4), 449–453 (1988). doi:10.1080/10402008808981847

    Article  Google Scholar 

  12. Herrera-Fierro, P., Shogrin, B.A., Jones, W.R.: Spectroscopic analysis of perfluoropolyether lubricant degradation during boundary lubrication. Lubr. Eng. 56(2), 23–29 (2000)

    Google Scholar 

  13. Zhang, J., Demas, N.G., Polycarpou, A.A., Economy, J.: A new family of low wear, low coefficient of friction polymer blend based on polytetrafluoroethylene and an aromatic thermosetting polyester. Polym. Adv. Technol. 19(8), 1105–1112 (2008). doi:10.1002/pat.1086

    Article  Google Scholar 

  14. Hsu, S.M., Klaus, E.E., Cheng, H.S.: A mechano-chemical descriptive model for wear under mixed lubrication conditions. Wear 128(3), 307–323 (1988). doi:10.1016/0043-1648(88)90066-X

    Article  Google Scholar 

  15. Hsu, S.M., Klaus, E.E.: Estimation of the molecular junction temperatures in four-ball contacts by chemical reaction rate studies. ASLE Trans. 21(3), 201–210 (1978). doi:10.1080/05698197808982875

    Article  Google Scholar 

  16. Hsu, S.M., Klaus, E.E.: Some chemical effects in boundary lubrication part I: base oil-metal interaction. ASLE Trans. 22(2), 135–145 (1979). doi:10.1080/05698197908982909

    Article  Google Scholar 

  17. Lenahan, P.M., Curry, S.E.: First observation of the 29Si hyperfine spectra of silicon dangling bond centers in silicon nitride. Appl. Phys. Lett. 56(2), 157 (1990). doi:10.1063/1.103278

    Article  Google Scholar 

  18. Schmellenmeier, H.: Die Beeinflussung von festen Oberflachen durch eine ionisierte. Exp. Tech. Phys. 1, 49–68 (1953)

    Google Scholar 

  19. Aisenberg, S.: Ion-Beam Deposition of Thin Films of Diamondlike Carbon. J. Appl. Phys. 42(7), 2953 (1971). doi:10.1063/1.1660654

    Article  Google Scholar 

  20. Eryilmaz, O.L., Erdemir, A.: TOF-SIMS and XPS characterization of diamond-like carbon films after tests in inert and oxidizing environments. Wear 265(1–2), 244–254 (2008). doi:10.1016/j.wear.2007.10.012

    Article  Google Scholar 

  21. Erdemir, A., Donnet, C.: Tribology of diamond-like carbon films: recent progress and future prospects. J. Phys. D Appl. Phys. 39(18), R311–R327 (2006). doi:10.1088/0022-3727/39/18/R01

    Article  Google Scholar 

  22. Singh, H., Ramirez, G., Eryilmaz, O., Greco, A., Doll, G., Erdemir, A.: Fatigue resistant carbon coatings for rolling/sliding contacts. Tribol. Int. (2016). doi:10.1016/j.triboint.2016.02.008

    Google Scholar 

  23. Lawes, S.D.A., Fitzpatrick, M.E., Hainsworth, S.V.: Evaluation of the tribological properties of DLC for engine applications. J. Phys. D Appl. Phys. 40(18), 5427–5437 (2007). doi:10.1088/0022-3727/40/18/S03

    Article  Google Scholar 

  24. Grill, A.: Tribology of diamondlike carbon and related materials: an updated review. Surf Coat Tech 94–5(1–3), 507–513 (1997). doi:10.1016/S0257-8972(97)00458-1

    Article  Google Scholar 

  25. Lettington, A.H.: Applications of diamond-like carbon thin films. Carbon 36(5–6), 555–560 (1998). doi:10.1016/s0008-6223(98)00062-1

    Article  Google Scholar 

  26. Hauert, R.: A review of modified DLC coatings for biological applications. Diam. Relat. Mater. 12(3–7), 583–589 (2003). doi:10.1016/S0925-9635(03)00081-5

    Article  Google Scholar 

  27. Erdemir, A., Bindal, C., Pagan, J., Wilbur, P.: Characterization of transfer layers on steel surfaces sliding against diamond-like hydrocarbon films in dry nitrogen. Surf. Coat. Tech. 76–77(1–3), 559–563 (1995). doi:10.1016/0257-8972(95)02518-9

    Article  Google Scholar 

  28. Ponsonnet, L., Donnet, C., Varlot, K., Martin, J.M., Grill, A., Patel, V.: EELS analysis of hydrogenated diamond-like carbon films. Thin Solid Films 319(1–2), 97–100 (1998). doi:10.1016/S0040-6090(97)01094-8

    Article  Google Scholar 

  29. Pastewka, L., Moser, S., Gumbsch, P., Moseler, M.: Anisotropic mechanical amorphization drives wear in diamond. Nat. Mater. 10(1), 34–38 (2011). doi:10.1038/Nmat2902

    Article  Google Scholar 

  30. Moon, M.W., Jensen, H.M., Hutchinson, J.W., Oh, K.H., Evans, A.G.: The characterization of telephone cord buckling of compressed thin films on substrates. J. Mech. Phys. Solids 50(11), 2355–2377 (2002). doi:10.1016/S0022-5096(02)00034-0

    Article  Google Scholar 

  31. Wu, W.J., Hon, M.H.: Thermal stability of diamond-like carbon films with added silicon. Surf. Coat. Tech. 111(2–3), 134–140 (1999). doi:10.1016/S0257-8972(98)00719-1

    Article  Google Scholar 

  32. Scharf, T.W., Singer, I.L.: Role of third bodies in friction behavior of diamond-like nanocomposite coatings studied by in situ tribometry. Tribol. Trans. 45(3), 363–371 (2002). doi:10.1080/10402000208982561

    Article  Google Scholar 

  33. Savage, R.H.: Graphite lubrication. J. Appl. Phys. 19(1), 1–10 (1948). doi:10.1063/1.1697867

    Article  Google Scholar 

  34. Rabinowicz, E., Imai, M.: Frictional properties of pyrolitic boron nitride and graphite. Wear 7(3), 298–300 (1964). doi:10.1016/0043-1648(64)90092-4

    Article  Google Scholar 

  35. Fusaro, R.L., Sliney, H.E.: Graphite fluoride (CFx)n—a new solid lubricant. ASLE Trans. 13(1), 56–65 (1970). doi:10.1080/05698197008972282

    Article  Google Scholar 

  36. Kato, K., Umehara, N., Adachi, K.: Friction, wear and N2-lubrication of carbon nitride coatings: a review. Wear 254(11), 1062–1069 (2003). doi:10.1016/s0043-1648(03)00334-x

    Article  Google Scholar 

  37. Shen, Y., Xu, J.J., Jin, M., Wang, J.J., Wang, L., Han, X.G., Zhang, H.P., Zhang, Y.D.: Tribological behavior among piston ring-hydrorefined mineral oil-cylinder liner for diesel engine. Appl. Mech. Mater. 148, 1307–1311 (2012)

    Google Scholar 

  38. Johnson, M., Spurlock, M.: Strategic oil analysis: estimating remaining lubricant life. Tribol. Lubr. Technol. (2010)

  39. Livingstone, G., Oakton, D.: The emerging problem of lubricant varnish. Maint. Asset Manage. 25, 38–42 (2010)

    Google Scholar 

  40. Lucas, L.: Problems and sources of varnish in hydraulic fluid. Hydraul Pneum. (2007)

  41. Sasaki, A., Uchiyama, S., Kawasaki, M.: Varnish formation in the gas turbine oil systems. J. ASTM Int. 5(2), 1–12 (2008)

    Article  Google Scholar 

  42. Phillips, W.D., Staniewski, J.W.G.: The origin, measurement and control of fine particles in non-aqueous hydraulic fluids and their effect on fluid and system performance. Lubr. Sci. 28(1), 43–64 (2016). doi:10.1002/ls.1300

    Article  Google Scholar 

  43. Atherton, B.: How to stop varnish before it costs you. Plast. Today (2008)

  44. Atherton, B.: Discovering the root cause of varnish formation. Pract. Oil Anal. (2007)

  45. Phillips, W.D.: The high-temperature degradation of hydraulic oils and fluids©. J. Synth. Lubr. 23(1), 39–70 (2006). doi:10.1002/jsl.11

    Article  Google Scholar 

  46. Sasaki, A., Uchiyama, S., Yamamoto, T.: Generation of static electricity during oil filtration. Lubr. Eng. 55(9), 14–21 (1999)

    Google Scholar 

  47. Barber, A., Filippini, B., Profilet, R., Tam, N.: A Fluid solution to preventing varnish formation in hydraulic systems. In: Lubricants Symposium 2008, pp. 175–175 (2008)

  48. Ribeiro, N.M., Pinto, A.C., Quintella, C.M., da Rocha, G.O., Teixeira, L.S.G., Guarieiro, L.L.N., Rangel, M.D., Veloso, M.C.C., Rezende, M.J.C., da Cruz, R.S., de Oliveira, A.M., Torres, E.A., de Andrade, J.B.: The role of additives for diesel and diesel blended (ethanol or biodiesel) fuels: a review. Energy Fuels 21(4), 2433–2445 (2007). doi:10.1021/ef070060r

    Article  Google Scholar 

  49. Heo, G., Lee, S., Kim, H., Park, U., Lee, G., Han, D., Chu, M., Choi, U., Hur, K., Lee, S.G., Kim, H.S., Park, W.K., Lee, K.C., Han, D.H., Chu, M.K., Choi, W.J.: Varnishing processing unit for processing surface of workpiece, has circulating pump provided with nozzle in which hydro static ball pressurizes exterior of workpiece, where circulating pump supplies hydraulic fluid to varnishing tool. KR2010095230-A; KR1077093-B1

  50. Hum, W., Holt, D.G.L., Blumenfeld, M.L., Galiano-Roth, A.S.: Improving varnish control in a mechanical device requiring hydraulic fluids, turbine oils, industrial fluids, circulating oils, or combinations by supplying the mechanical device with a lubricating composition. US2015099675-A1; WO2015050690-A1

  51. ASTM: Standard test method for measurement of lubricant generated insoluble color bodies in in-service turbine oils using membrane patch colorimetry. In: ASTM International, West Conshohocken. vol. ASTM D7843-12. ASTM International (2012)

  52. Robertson, J.: Diamond-like amorphous carbon. Mater. Sci. Eng. R 37(4–6), 129–281 (2002). doi:10.1016/S0927-796x(02)00005-0

    Article  Google Scholar 

  53. Ferrari, A.C., Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61(20), 14095–14107 (2000). doi:10.1103/PhysRevB.61.14095

    Article  Google Scholar 

  54. Chu, P.K., Li, L.H.: Characterization of amorphous and nanocrystalline carbon films. Mater. Chem. Phys. 96(2–3), 253–277 (2006). doi:10.1016/j.matchemphys.2005.07.048

    Article  Google Scholar 

  55. Pappas, D.L., Saenger, K.L., Cuomo, J.J., Dreyfus, R.W.: Characterization of laser vaporization plasmas generated for the deposition of diamond-like carbon. J. Appl. Phys. 72(9), 3966–3970 (1992). doi:10.1063/1.352249

    Article  Google Scholar 

  56. Cuomo, J.J., Pappas, D.L., Bruley, J., Doyle, J.P., Saenger, K.L.: Vapor deposition processes for amorphous carbon films with sp3 fractions approaching diamond. J. Appl. Phys. 70(3), 1706–1711 (1991)

    Article  Google Scholar 

  57. Liao, Y., Pourzal, R., Wimmer, M.A., Jacobs, J.J., Fischer, A., Marks, L.D.: Graphitic tribological layers in metal-on-metal hip replacements. Science 334(6063), 1687–1690 (2011). doi:10.1126/science.1213902

    Article  Google Scholar 

  58. Buscher, R., Tager, G., Dudzinski, W., Gleising, B., Wimmer, M.A., Fischer, A.: Subsurface microstructure of metal-on-metal hip joints and its relationship to wear particle generation. J. Biomed. Mater. Res. B Appl. Biomater. 72(1), 206–214 (2005). doi:10.1002/jbm.b.30132

    Article  Google Scholar 

  59. Wimmer, M.A., Sprecher, C., Hauert, R., Tager, G., Fischer, A.: Tribochemical reaction on metal-on-metal hip joint bearings—a comparison between in vitro and in vivo results. Wear 255(7–12), 1007–1014 (2003). doi:10.1016/S0043-1648(03)00127-3

    Article  Google Scholar 

  60. Zahiri, C.A., Schmalzried, T.P., Ebramzadeh, E., Szuszczewicz, E.S., Salib, D., Kim, C., Amstutz, H.C.: Lessons learned from loosening of the McKee-Farrar metal-on-metal total hip replacement. J. Arthroplasty 14(3), 326–332 (1999). doi:10.1016/s0883-5403(99)90059-1

    Article  Google Scholar 

  61. Tager, K.H.: Studies on surface and new joint capsule of Mckee-Farrar prosthesis implanted for several years. Arch. Orthop. Trauma Surg. 86(1), 101–113 (1976). doi:10.1007/Bf00415308

    Google Scholar 

  62. Walker, P.S., Salvati, E., Hotzler, R.K.: The wear on removed McKee-Farrar total hip prostheses. J. Bone Jt. Surg. Am. 56(1), 92–100 (1974)

    Google Scholar 

  63. Mavraki, A., Cann, P.M.: Lubricating film thickness measurements with bovine serum. Tribol. Int. 44(5), 550–556 (2011). doi:10.1016/j.triboint.2010.07.008

    Article  Google Scholar 

  64. Mishina, H., Kojima, M.: Changes in human serum albumin on arthroplasty frictional surfaces. Wear 265(5–6), 655–663 (2008). doi:10.1016/j.wear.2007.12.006

    Article  Google Scholar 

  65. Wang, A., Yue, S., Bobyn, J.D., Chan, F.W., Medley, J.B.: Surface characterization of metal-on-metal hip implants tested in a hip simulator. Wear 225, 708–715 (1999). doi:10.1016/S0043-1648(98)00384-6

    Article  Google Scholar 

  66. Hesketh, J., Ward, M., Dowson, D., Neville, A.: The composition of tribofilms produced on metal-on-metal hip bearings. Biomaterials 35(7), 2113–2119 (2014). doi:10.1016/j.biomaterials.2013.11.065

    Article  Google Scholar 

  67. Myant, C., Cann, P.: In contact observation of model synovial fluid lubricating mechanisms. Tribol. Int. 63, 97–104 (2013). doi:10.1016/j.triboint.2012.64.029

    Article  Google Scholar 

  68. Wimmer, M., Mathew, M., Laurent, M., Nagelli, C., Liao, Y., Marks, L., Pourzal, R., Fischer, A., Jacobs, J.: Tribochemical reactions in metal-on-metal hip joints influence wear and corrosion. In: Metal-On-Metal Total Hip Replacement Devices. ASTM International (2013)

  69. Dugger, M.T.: Tribological Challenges in MEMS and Their Mitigation Via Vapor Phase Lubrication. In: George, T., Islam, M.S., Dutta, A.K. (eds.) Proceedings of SPIE Micro- and Nanotechnology Sensors, Systems, and Applications Iii, vol. 8031 (2011)

  70. Strawhecker, K., Asay, D., McKinney, J., Kim, S.: Reduction of adhesion and friction of silicon oxide surface in the presence of n-propanol vapor in the gas phase. Tribol. Lett. 19(1), 17–21 (2005)

    Article  Google Scholar 

  71. Asay, D.B., Dugger, M.T., Kim, S.H.: In-situ vapor-phase lubrication of MEMS. Tribol. Lett. 29(1), 67–74 (2007). doi:10.1007/s11249-007-9283-0

    Article  Google Scholar 

  72. Asay, D.B., Kim, S.H.: Molar volume and adsorption isotherm dependence of capillary forces in nanoasperity contacts. Langmuir 23(24), 12174–12178 (2007). doi:10.1021/la701954k

    Article  Google Scholar 

  73. Carroll, B., Gogotsi, Y., Kovalchenko, A., Erdemir, A., McNallan, M.J.: Effect of humidity on the tribological properties of carbide-derived carbon (CDC) films on silicon carbide. Tribol. Lett. 15(1), 51–55 (2003). doi:10.1023/A:1023508006745

    Article  Google Scholar 

  74. Ersoy, D.A., McNallan, M.J., Gogotsi, Y., Erdemir, A.: Tribological properties of carbon coatings produced by high temperature chlorination of silicon carbide. Tribol. Trans. 43(4), 809–815 (2000). doi:10.1080/10402000008982412

    Article  Google Scholar 

  75. Graham, E., Klaus, E.: Lubrication from the vapor phase at high temperatures. ASLE Trans. 29(2), 229–234 (1986)

    Article  Google Scholar 

  76. Hook, D.A., Timpe, S.J., Dugger, M.T., Krim, J.: Tribological degradation of fluorocarbon coated silicon microdevice surfaces in normal and sliding contact. J. Appl. Phys. 104(3), 034303 (2008)

    Article  Google Scholar 

  77. Tanner, D.M., Miller, W.M., Eaton, W.P., Irwin, L.W., Peterson, K.A., Dugger, M.T., Senft, D.C., Smith, N.F., Tangyunyong, P., Miller, S.L.: The effect of frequency on the lifetime of a surface micromachined microengine driving a load. In: Reliability Physics Symposium Proceedings. 36th Annual. 1998 IEEE International, pp. 26–35 (1998)

  78. Sung, D., Gellman, A.: The surface chemistry of alkyl and arylphosphate vapor phase lubricants on Fe foil. Tribol. Int. 35(9), 579–590 (2002)

    Article  Google Scholar 

  79. Singer, I., Mogne, T.L., Donnet, C., Martin, J.: Friction behavior and wear analysis of SiC sliding against Mo in SO2, O2 and H2S at gas pressures between 4 and 40 Pa. Tribol. Trans. 39(4), 950–956 (1996)

    Article  Google Scholar 

  80. Hibi, Y., Enomoto, Y., Tanaka, A.: Lubricity of metal ethoxide formed on sliding surfaces of Si3N4-TiN-Ti composites in ethanol. J. Mater. Sci. Lett. 19(20), 1809–1812 (2000). doi:10.1023/A:1006742323483

    Article  Google Scholar 

  81. Barnick, N.J., Blanchet, T.A., Sawyer, W.G., Gardner, J.E.: High temperature lubrication of various ceramics and metal alloys via directed hydrocarbon feed gases. Wear 214(1), 131–138 (1998)

    Article  Google Scholar 

  82. Dugger, M.: Nano/Micro-Tribology of MEMS. In: vol. SAND2014-4771C. U.S. Department of Engery (2014)

  83. Asay, D.B., Dugger, M.T., Ohlhausen, J.A., Kim, S.H.: Macro- to nanoscale wear prevention via molecular adsorption. Langmuir 24(1), 155–159 (2008). doi:10.1021/la702598g

    Article  Google Scholar 

  84. Barbier, J.: Deactivation of reforming catalysts by coking—a Review. Appl. Catal. 23(2), 225–243 (1986). doi:10.1016/S0166-9834(00)81294-4

    Article  Google Scholar 

  85. Forzatti, P., Lietti, L.: Catalyst deactivation. Catal. Today 52(2–3), 165–181 (1999). doi:10.1016/S0920-5861(99)00074-7

    Google Scholar 

  86. Trimm, D.L.: Control of coking. Chem. Eng. Process. 18(3), 137–148 (1984). doi:10.1016/0255-2701(84)80003-3

    Article  Google Scholar 

  87. Trimm, D.L.: Coke formation and minimisation during steam reforming reactions. Catal. Today 37(3), 233–238 (1997). doi:10.1016/s0920-5861(97)00014-x

    Article  Google Scholar 

  88. Li, C., Stair, P.C.: Ultraviolet Raman spectroscopy characterization of coke formation in zeolites. Catal. Today 33(1–3), 353–360 (1997). doi:10.1016/S0920-5861(96)00120-4

    Article  Google Scholar 

  89. Rostrup-Nielsen, J., Tottrup, P.: Symp. Science of Catal. Appl. Industry, FPDIL Sindri (39), 379 (1979)

  90. Guisnet, M., Magnoux, P.: Coking and deactivation of zeolites—influence of the pore structure. Appl. Catal. 54(1), 1–27 (1989). doi:10.1016/S0166-9834(00)82350-7

    Article  Google Scholar 

  91. Rostrup-Nielsen, J.R.: Industrial relevance of coking. Catal. Today 37(3), 225–232 (1997). doi:10.1016/s0920-5861(97)00016-3

    Article  Google Scholar 

  92. Gallezot, P., Leclercq, C., Guisnet, M., Magnoux, P.: Coking, aging, and regeneration of zeolites: VII. Electron microscopy and EELS studies of external coke deposits on USHY, H-OFF, and H-ZSM-5 zeolites. J. Catal. 114(1), 100–111 (1988)

    Article  Google Scholar 

  93. Corthals, S., Van Nederkassel, J., Geboers, J., De Winne, H., Van Noyen, J., Moens, B., Sels, B., Jacobs, P.: Influence of composition of MgAl2O4 supported NiCeO2ZrO2 catalysts on coke formation and catalyst stability for dry reforming of methane. Catal. Today 138(1–2), 28–32 (2008). doi:10.1016/j.cattod.2008.04.038

    Article  Google Scholar 

  94. Behera, B., Ray, S.S., Singh, I.D.: NMR Studies of FCC Feeds, Catalysts and Coke. In: Ocelli, M.L. (ed.) Fluid Catalytic Cracking Vii Materials: Methods and Process Innovations, vol. 166. Studies in Surface Science and Catalysis, pp. 163–200 (2007)

  95. Liu, B.S., Jiang, L., Sun, H., Au, C.T.: XPS, XAES, and TG/DTA characterization of deposited carbon in methane dehydroaromatization over Ga-Mo/ZSM-5 catalyst. Appl. Surf. Sci. 253(11), 5092–5100 (2007). doi:10.1016/j.apsusc.2006.11.031

    Article  Google Scholar 

  96. Hardiman, K.M., Cooper, C.G., Adesina, A.A., Lange, R.: Post-mortem characterization of coke-induced deactivated alumina-supported Co–Ni catalysts. Chem. Eng. Sci. 61(8), 2565–2573 (2006). doi:10.1016/j.ces.2005.11.021

    Article  Google Scholar 

  97. Tiratsoo, E.N.: Natural Gas, vol. 1979. Gulf Pub Co, Houston (1979)

    Google Scholar 

  98. Rostrup-Nielsen, J.R.: Aspects of CO2-reforming of methane. In: Curry-Hyde, H.E., Howe, R.F. (eds.) Studies in Surface Science and Catalysis, vol. 81, pp. 25–41. Elsevier, Amsterdam (1994)

    Google Scholar 

  99. Mizoh, Y.: Wear of tribe-elements of video tape recorders. Wear 200(1–2), 252–264 (1996). doi:10.1016/S0043-1648(96)07278-X

    Article  Google Scholar 

  100. Bharat, B., Hahn, F.W.: Stains on magnetic tape heads. Wear 184(2), 193–202 (1995)

    Article  Google Scholar 

  101. Rabinowicz, E.: The tribology of magnetic recording systems—an overview. Tribol. Mech. Magn. Storage Syst. 3, 1–7 (1986)

    Google Scholar 

  102. Mizoh, Y.: Wear of magnetic video head. J. Jpn. Soc. Tribol. 40(12), 981–986 (1995)

    Google Scholar 

  103. Osaki, H.: Flexible media—recent developments from the tribology point of view. Tribol. Int. 33(5–6), 373–382 (2000). doi:10.1016/S0301-679x(00)00057-8

    Article  Google Scholar 

  104. Kuroe, A., Shinoda, F., Mikoda, M.: An experimental analysis of the recorded signal decrease phenomena in the repeated tape running. Electr. Inf. Soc. 194–200 (1991)

  105. Montgomery, R.S.: Run-in and glaze formation on gray cast iron surfaces. Wear 14(2), 99 (1969). doi:10.1016/0043-1648(69)90340-8

    Article  Google Scholar 

  106. Sugishita, J., Fujiyoshi, S.: The effect of cast iron graphites on friction and wear performance I: graphite film formation on grey cast iron surfaces. Wear 66(2), 209–221 (1981)

    Article  Google Scholar 

  107. Takeuchi, E.: The mechanisms of wear of cast iron in dry sliding. Wear 11(3), 201–212 (1968). doi:10.1016/0043-1648(68)90558-9

    Article  Google Scholar 

  108. Leach, P.W., Borland, D.W.: The unlubricated wear of flake graphite cast-iron. Wear 85(2), 257–266 (1983). doi:10.1016/0043-1648(83)90068-6

    Article  Google Scholar 

  109. Erdemir, A.: Review of engineered tribological interfaces for improved boundary lubrication. Tribol. Int. 38(3), 249–256 (2005). doi:10.1016/j.triboint.2004.08.008

    Article  Google Scholar 

  110. Erdemir, A., Eryilmaz, O.L., Urgen, M., Kazmanli, K.: Method to produce catalytically active nanocomposite coatings. In: Google Patents (2013)

  111. Dowson, D., Jin, Z.M.: Metal-on-metal hip joint tribology. Proc. Inst. Mech. Eng. H 220(2), 107–118 (2006). doi:10.1243/095441105x69114

    Article  Google Scholar 

  112. Rostrup-Nielsen, J.R.: Sulfur-passivated nickel catalysts for carbon-free steam reforming of methane. J. Catal. 85(1), 31–43 (1984). doi:10.1016/0021-9517(84)90107-6

    Article  Google Scholar 

  113. Fang, S., Lin, G.X.: Managing varnish of turbine oil. In: Kim, Y.H., Yarlagadda, P. (eds.) Materials, Mechanical and Manufacturing Engineering, vol. 842. Advanced Materials Research, pp. 341–344 (2014)

  114. Bell, J., Tipper, J.L., Ingham, E., Stone, M.H., Fisher, J.: The influence of phospholipid concentration in protein-containing lubricants on the wear of ultra-high molecular weight polyethylene in artificial hip joints. Proc. Inst. Mech. Eng. Part H-J. Eng. Med. 215(H2), 259–263 (2001). doi:10.1243/0954411011533661

    Article  Google Scholar 

  115. Keenan, M.R., Kotula, P.G.: Accounting for poisson noise in the multivariate analysis of ToF-SIMS spectrum images. Surf. Interface Anal. 36(3), 203–212 (2004)

    Article  Google Scholar 

  116. Tang, S., Gao, S., Hu, S., Wang, J., Zhu, Q., Chen, Y., Li, X.: Inhibition Effect of APCVD titanium nitride coating on coke growth during n-hexane thermal cracking under supercritical conditions. Ind. Eng. Chem. Res. 53(13), 5432–5442 (2014). doi:10.1021/ie401889p

    Article  Google Scholar 

  117. Hibi, Y., Enomoto, Y.: Mechanochemical reaction and relationship to tribological response of silicon nitride in n-alcohol. Wear 231(2), 185–194 (1999). doi:10.1016/S0043-1648(99)00094-0

    Article  Google Scholar 

  118. Mccarty, J.G., Wise, H.: Hydrogenation of surface carbon on alumina-supported nickel. J. Catal. 57(3), 406–416 (1979). doi:10.1016/0021-9517(79)90007-1

    Article  Google Scholar 

  119. Dowden, D.A.: Crystal and ligand field models of solid catalysts. Catal. Rev. 5(1), 1–32 (1972). doi:10.1080/01614947208076863

    Article  Google Scholar 

  120. Yan, Y., Neville, A., Dowson, D., Hollway, F.: Biotribocorrosion of CoCrMo orthopaedic implant materials—assessing the formation and effect of the biofilm. Tribol. Int. 40(10–12), 1728 (2007). doi:10.1016/j.triboint.2007.02.019

    Google Scholar 

  121. Yan, Y., Neville, A., Dowson, D., Williams, S., Fisher, J.: Tribofilm formation in biotribocorrosion – does it regulate ion release in metal-on-metal artificial hip joints? Proc. Inst. Mech. Eng. Part J. Eng. Med. 224(9), 997–1006 (2010). doi:10.1243/13506501jet762

    Article  Google Scholar 

  122. Nakayama, K.: Triboemission of charged-particles from various solids under boundary lubrication conditions. Wear 178(1–2), 61–67 (1994). doi:10.1016/0043-1648(94)90129-5

    Article  Google Scholar 

  123. Nevshupa, R.A., Nakayama, K.: Triboemission behavior of photons at dielectric/dielectric sliding: time dependence nature at 10[sup −4]–10[sup 4]s. J. Appl. Phys. 93(11), 9321 (2003). doi:10.1063/1.1570934

    Article  Google Scholar 

  124. Nevshupa, R.A., Nakayama, K.: Effect of nanometer thin metal film on triboemission of negatively charged particles from dielectric solids. Vacuum 67(3–4), 485–490 (2002). doi:10.1016/S0042-207x(02)00234-8

    Article  Google Scholar 

  125. Ferrante, J.: Exoelectron emission from a clean, annealed magnesium single crystal during oxygen adsorption. ASLE Trans. 20(4), 328–332 (1977). doi:10.1080/05698197708982851

    Article  Google Scholar 

  126. Warren, W.L., Lenahan, P.M.: Electron-nuclear double-resonance and electron-spin-resonance study of silicon dangling-bond centers in silicon nitride. Phys. Rev. B 42(3), 1773–1780 (1990)

    Article  Google Scholar 

  127. Podgornik, B., Hren, D., Vižintin, J.: Low-friction behaviour of boundary-lubricated diamond-like carbon coatings containing tungsten. Thin Solid Films 476(1), 92–100 (2005). doi:10.1016/j.tsf.2004.09.028

    Article  Google Scholar 

  128. de Barros’Bouchet, M.I., Martin, J.M., Le-Mogne, T., Vacher, B.: Boundary lubrication mechanisms of carbon coatings by MoDTC and ZDDP additives. Tribol. Int. 38(3), 257–264 (2005). doi:10.1016/j.triboint.2004.08.009

    Article  Google Scholar 

  129. Nakayama, K.: Triboemission of electrons, ions, and photons from diamondlike carbon films and generation of tribomicroplasma. Surf. Coat. Tech. 188, 599–604 (2004). doi:10.1016/j.surfcoat.2004.07.103

    Article  Google Scholar 

  130. Sanchez-Lopez, J.C., Erdemir, A., Donnet, C., Rojas, T.C.: Friction-induced structural transformations of diamondlike carbon coatings under various atmospheres. Surf. Coat. Tech. 163, 444–450 (2003). doi:10.1016/S0257-8972(02)00641-2

    Article  Google Scholar 

  131. Liu, Y., Erdemir, A., Meletis, E.I.: Influence of environmental parameters on the frictional behavior of DLC coatings. Surf. Coat. Tech. 94–5(1–3), 463–468 (1997). doi:10.1016/S0257-8972(97)00450-7

    Article  Google Scholar 

  132. Erdemir, A., Bindal, C., Fenske, G.R., Zuiker, C., Wilbur, P.: Characterization of transfer layers forming on surfaces sliding against diamond-like carbon. Surf. Coat. Tech. 86–7(1–3), 692–697 (1996). doi:10.1016/S0257-8972(96)03073-3

    Article  Google Scholar 

  133. Kim, D.S., Fischer, T.E., Gallois, B.: The effects of oxygen and humidity on friction and wear of diamond-like carbon-films. Surf. Coat. Tech. 49(1–3), 537–542 (1991). doi:10.1016/0257-8972(91)90113-B

    Article  Google Scholar 

  134. Lhomme, V., Bruneau, C., Soyer, N., Brault, A.: Thermal behavior of some organic phosphates. Ind. Eng. Chem. Prod. Res. Dev. 23(1), 98–102 (1984). doi:10.1021/i300013a021

    Article  Google Scholar 

  135. Appleby, W.G., Gibson, J.W., Good, G.M.: Coke formation in catalytic cracking. Ind. Eng. Chem. Process Des. Dev. 1(2), 102–110 (1962). doi:10.1021/i260002a006

    Article  Google Scholar 

  136. Merkle, A., Erdemir, A., Eryilmaz, O., Johnson, J., Marks, L.: In situ TEM studies of tribo-induced bonding modifications in near-frictionless carbon films. Carbon 48(3), 587–591 (2010)

    Article  Google Scholar 

  137. Mangolini, F., Rose, F., Hilbert, J., Carpick, R.W.: Thermally induced evolution of hydrogenated amorphous carbon. Appl. Phys. Lett. (2013). doi:10.1063/1.4826100

    Google Scholar 

  138. Nalwa, H.S.: Handbook of Surfaces and Interfaces of Materials, Five-Volume Set. Elsevier Science, Amsterdam (2001)

    Google Scholar 

  139. Liao, Y., Marks, L.D.: Modeling of thermal-assisted dislocation friction. Tribol. Lett. 37(2), 283–288 (2010). doi:10.1007/s11249-009-9520-9

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the NSF under the Grant Number CMMI-1030703. EEH is funded through the National Defense Science and Engineering Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily E. Hoffman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoffman, E.E., Marks, L.D. Graphitic Carbon Films Across Systems. Tribol Lett 63, 32 (2016). https://doi.org/10.1007/s11249-016-0720-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-016-0720-9

Keywords

Navigation