Skip to main content

Advertisement

Log in

Vacuum Tribological Properties of Titanium with a Nanocrystalline Surface Layer

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In order to enhance the tribological properties of titanium (Ti), a gradient structure with a nanocrystalline surface layer was formed on the surface of the UNS R50400 (Gr2/TA2/CP3) Ti discs by means of ultrasonic surface rolling processing (USRP). The microstructure and microhardness of the USRP and untreated Ti were investigated. The tribological properties of the USRP Ti under both vacuum and atmospheric conditions were examined in comparison with the untreated Ti using a ball-on-disc vacuum tribometer. The results showed that an ultrafine-grained (UFG) deformation layer with a thickness of 200 μm was produced on the USRP Ti, and its mean surface grain size was refined to about 38 nm from 45 μm. The surface hardness of the USRP Ti is 310 HV, which is about 2.3 times that of the untreated Ti. Additionally, the USRP Ti possesses a lower friction coefficient and higher wear resistance under vacuum conditions than untreated Ti. Under atmospheric conditions, USRP Ti shows more extensive oxidation wear and milder abrasive wear compared with the untreated Ti. Under vacuum conditions, because of the formation of the UFG deformation layer, USRP Ti exhibits a significant decrease in plastic deformation and adhesive wear compared with the untreated Ti.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Schutz, R.W., Watkins, H.B.: Recent developments in titanium alloy application in the energy industry. Mater. Sci. Eng. A 243, 305–315 (1998)

    Article  Google Scholar 

  2. Schutz, R.W., Baxter, C.F., Boster, P.L.: Applying titanium alloys in drilling and offshore production systems. JOM 53(4), 33–35 (2001)

    Article  Google Scholar 

  3. Smith, J.E., Schutz, R.W., Bailey, E.I.: Titanium-drill pipe development for short-radius drilling. J. Petrol. Technol. 52(5), 50–53 (2000)

    Article  Google Scholar 

  4. Eylon, D., Seagle, S.R.: Advances in titanium technology: an overview. J. Jpn. Inst. Light Met. 50(8), 359–370 (2000)

    Google Scholar 

  5. Magnani, P.G., Re, E., Ylikorpi, T., Cherubini, G., Olivieri, A.: Different drill tool concepts. Acta Astronaut. 59, 1014–1019 (2006)

    Article  Google Scholar 

  6. Navarathinam, N., Lee, R., Borschiov, K., Quine, B.: Northern light drill for Mars: performance evaluation. Acta Astronaut. 68, 1234–1241 (2011)

    Article  Google Scholar 

  7. Finzi, A.E., Lavagna, M., Rocchitelli, G.: A drill-soil system modelization for future Mars exploration. Planet. Space Sci. 52, 83–89 (2004)

    Article  Google Scholar 

  8. Magnani, P.G., Re, E., Ylikorpi, T., Cherubini, G., Olivieri, A.: Deep drill (DeeDri) for Mars application. Planet. Space Sci. 52, 79–82 (2004)

    Article  Google Scholar 

  9. Miyoshi, K.: Aerospace mechanisms and tribology technology—case study. Tribol. Int. 32(11), 605–616 (1999)

    Article  Google Scholar 

  10. Miyoshi, K.: Considerations in vacuum tribology (adhesion, friction, wear, and solid lubrication in vacuum). Tribol. Int. 32(11), 673–685 (1999)

    Article  Google Scholar 

  11. Salama, M.M., Murali, J., Joosten, M.W.: Titanium drilling risers—application and qualification. J. Offshore Mech. Arct. 122(1), 47–51 (1999)

    Article  Google Scholar 

  12. Qin, Y.B., Dou, Y.H., Wang, X.Z., Yang, J.W.: Development of the ring block drill pipe casing wear tester and experimental research. Adv. Mater. Res. 634–638, 3582–3585 (2013)

    Article  Google Scholar 

  13. Talalay, P.G.: Subglacial till and bedrock drilling. Cold Reg. Sci. Technol. 86, 142–166 (2013)

    Article  Google Scholar 

  14. Zhu, X.H., Liu, S.H., Tong, H.: Comparative study of drill pipe erosion wear in gas drilling and mud drilling. Appl. Mech. Mater. 34–35, 1708–1712 (2010)

    Article  Google Scholar 

  15. Radziszewski, P., Laplante, R., De Ciccio, P.: Approximating diamond drill rod wear. CIM Bull. 95, 93–96 (2002)

    Google Scholar 

  16. Liu, S.H., Zheng, H.L., Zhu, X.H.: Drill string failure analysis and erosion wear study at key point for gas drilling. Energy Explor. Exploit. 32(3), 553–568 (2014)

    Article  Google Scholar 

  17. Zhu, X.H., Liu, S.H., Tong, H., Huang, X.B., Li, J.: Experimental and numerical study of drill pipe erosion wear in gas drilling. Eng. Fail. Anal. 26, 370–380 (2012)

    Article  Google Scholar 

  18. Yu, L., Zhang, L.B., Fan, J.C.: Influence of iron ore powder and barite on the friction and wear behavior of casing and drill pipe pair. J. Tribol. 24(5), 462–466 (2004)

    Google Scholar 

  19. Zacny, K., Cooper, G.: Considerations, constraints and strategies for drilling on Mars. Planet. Space Sci. 54, 345–356 (2006)

    Article  Google Scholar 

  20. Lebedeva, I.L., Presnyakova, G.N.: Adhesion wear mechanisms under dry friction of titanium alloys in vacuum. Wear 148(2), 203–210 (1991)

    Article  Google Scholar 

  21. Liu, Y., Yang, D.Z., He, S.Y., Wu, W.L.: Microstructure developed in the surface layer of Ti6Al4V alloy after sliding wear in vacuum. Mater. Charact. 50, 275–279 (2003)

    Article  Google Scholar 

  22. Zhecheva, A., Sha, W., Malinov, S., Long, A.: Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods. Surf. Coat. Technol. 200, 2192–2207 (2005)

    Article  Google Scholar 

  23. Valiev, R.: Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3, 511–516 (2004)

    Article  Google Scholar 

  24. Estrin, Y., Vinogradov, A.: Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater. 61, 782–817 (2013)

    Article  Google Scholar 

  25. Gao, N., Wang, C.T., Wood, R.J.K., Langdon, T.G.: Tribological properties of ultrafine-grained materials processed by severe plastic deformation. J. Mater. Sci. 47(12), 4779–4797 (2012)

    Article  Google Scholar 

  26. Styarov, V.V., Shuster, L.S., Migranov, M.S., Valiev, R.Z., Zhu, Y.T.: Reduction of friction coefficient of ultrafine-grained CP titanium. Mater. Sci. Eng. A 371, 313–317 (2004)

    Article  Google Scholar 

  27. La, P.Q., Ma, J.Q., Zhu, Y.T., Yang, J., Liu, W.M., Xue, Q.J., Valiev, R.Z.: Dry sliding tribological properties of ultrafinegrained Ti prepared by severe plastic deformation. Acta Mater. 53, 5167–5173 (2005)

    Article  Google Scholar 

  28. Wang, C.T., Gao, N., Mark, G.G., Wood, R.J.K., Langdon, T.G.: Effect of grain size on the micro-tribological behavior of pure titanium processed by high-pressure torsion. Wear 280–281, 28–35 (2012)

    Article  Google Scholar 

  29. Purceka, G., Saray, O., Kul, O., Karaman, I., Yapici, G.G., Haouaoui, M., Maier, H.J.: Mechanical and wear properties of ultrafine-grained pure Ti produced by multi-pass equal-channel angular extrusion. Mater. Sci. Eng. A 517, 97–104 (2009)

    Article  Google Scholar 

  30. Lu, K., Lu, J.: Surface nanocrystallization (SNC) of metallic materials presentation of the concept behind a new approach. J. Mater. Sci. Technol. 15, 193–197 (1999)

    Article  Google Scholar 

  31. Lu, K., Lu, J.: Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater. Sci. Eng. A 375–377, 38–45 (2004)

    Article  Google Scholar 

  32. Wang, T., Wang, D.P., Liu, G., Gong, B.M., Song, N.G.: Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing. Appl. Surf. Sci. 255, 1824–1829 (2008)

    Article  Google Scholar 

  33. Liu, Y., Wang, L.J., Wang, D.P.: Finite element modeling of ultrasonic surface rolling process. J. Mater. Proc. Technol. 211, 2106–2113 (2011)

    Article  Google Scholar 

  34. Huang, L., Lu, J., Troyon, M.: Nanomechanical properties of nanostructured titanium prepared by SMAT. Surf. Coat. Technol. 201(1–2), 208–213 (2006)

    Article  Google Scholar 

  35. Wen, M., Wen, C., Hodgson, P.D., Li, Y.C.: Tribological behavior of pure Ti with a nanocrystalline surface layer under different loads. Tribol. Lett. 45, 59–66 (2012)

    Article  Google Scholar 

  36. Ma, G.Z., Xu, B.S., Wang, H.D., Chen, S.Y., Xing, Z.G.: Excellent vacuum tribological properties of Pb/PbS film deposited by Rf magnetron sputtering and ion sulfurizing. Appl. Mater. Interfaces 6, 532–538 (2014)

    Article  Google Scholar 

  37. She, D.S., Yue, W., Fu, Z.Q., Gu, Y.H., Wang, C.B., Liu, J.J.: The effect of nitriding temperature on hardness and microstructure of die steel pre-treated by ultrasonic cold forging technology. Mater. Des. 49, 392–399 (2013)

    Article  Google Scholar 

  38. Paschke, H., Weber, M., Kaestner, P., Braeuer, G.: Influence of different plasma nitriding treatments on the wear and crack behavior of forging tools evaluated by Rockwell indentation and scratch tests. Surf. Coat. Technol. 205, 1465–1469 (2010)

    Article  Google Scholar 

  39. Fillot, N., Iordanoff, I., Berthier, Y.: Wear modeling and the third body concept. Wear 262, 949–957 (2007)

    Article  Google Scholar 

  40. Godet, M.: The third-body approach: a mechanical view of wear. Wear 100, 431–452 (1984)

    Article  Google Scholar 

  41. Fillot, N., Iordanoff, I., Berthier, Y.: Modelling third body flows with a discrete element method—a tool for understanding wear with adhesive particles. Tribol. Int. 40, 973–981 (2007)

    Article  Google Scholar 

  42. Landolt, D., Mischler, S., Stemp, M., Barril, S.: Third body effects and material fluxes in tribocorrosion systems involving a sliding contact. Wear 256, 517–524 (2004)

    Article  Google Scholar 

  43. Ma, C., Wang, S.C., Wang, L.P., Walsh, F.C., Wood, R.J.K.: The role of a tribofilm and wear debris in the tribological behavior of nanocrystalline Ni–Co electrodeposits. Wear 306, 296–303 (2013)

    Article  Google Scholar 

  44. Wang, H.D., Ma, G.Z., Xu, B.S., Si, H.J., Yang, D.X.: Microstructure and vacuum tribological properties of 1Cr18Ni9Ti steel with combined surface treatments. Surf. Coat. Technol. 205, 3546–3552 (2011)

    Article  Google Scholar 

  45. Ma, G.L., Yang, J.Q., Liu, Y., He, S.Y., Jiang, Z.H.: Friction and wear behavior of nanocrystalline nickel in air and vacuum. Tribol. Lett. 49, 481–490 (2013)

    Article  Google Scholar 

  46. Nouari, M., Iordanoff, I.: Effect of the third-body particles on the tool–chip contact and tool-wear behaviour during dry cutting of aeronautical titanium alloy. Tribol. Int. 40, 1351–1359 (2007)

    Article  Google Scholar 

  47. Iordanoff, I., Seve, B., Berthier, Y.: Solid third body analysis using a discrete approach: influence of adhesion and particle size on macroscopic properties. J. Tribol. 124(3), 530–538 (2002)

    Article  Google Scholar 

  48. Zmitrowicz, A.: Wear debris: a review of properties and constitutive models. J. Theor. Appl. Mech. 43(1), 3–35 (2005)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the National Natural Science Foundation of China (51375466), Beijing Higher Education Young Elite Teacher Project (YETP0646), Beijing Natural Science Foundation (3132023), Fundamental Research Funds for the Central Universities (2652013080) and Tribology Science Fund of State Key Laboratory of Tribology (SKLTKF13B10). The authors would like to thank Prof. Haidou Wang and Dr. Guozheng Ma from the National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, for their help with the use of the vacuum tribometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Yue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

She, D., Yue, W., Du, Y. et al. Vacuum Tribological Properties of Titanium with a Nanocrystalline Surface Layer. Tribol Lett 57, 1 (2015). https://doi.org/10.1007/s11249-014-0447-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-014-0447-4

Keywords

Navigation