Skip to main content
Log in

Action Mechanism of WS2 Nanoparticles with ZDDP Additive in Boundary Lubrication Regime

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The effect in the tribological performance of WS2 fullerene-like nanoparticles in PAO base oil when adding a ZDDP additive was studied at 100 °C in the boundary lubrication regime. The tribological properties of the dispersion surpass those obtained without one of the two additives. The friction modifier properties of the particles are improved in the presence of ZDDP, while the anti-wear properties of the ZDDP are increased when the particles are added to the dispersion. The composition of the formed tribofilm was investigated. Results show that a 50–60 nm tribofilm is formed on the steel surface composed by WS2 mixed on the ZDDP chemical tribofilm. A WS2-rich layer is observed at the top of the tribofilm. A correlation between the chemical composition of the tribofilm and the tribological properties of the “PAO + WS2 + ZDDP” dispersion was made. Synergy between the two additives was proven.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Holmberg, K., Andersson, P., Erdemir, A.: Global energy consumption due to friction in passenger cars. Tribol. Int. 47, 221–234 (2012)

    Article  Google Scholar 

  2. Stachowiak, G.W., Batchelor, A.W.: Engineering Tribology. Butterworth-Heinemann, Burlington (2005)

  3. Ettefaghi, E.O.L., Ahmadi, H., Rashidi, A., Nouralishahi, A., Mohtasebi, S.S.: Preparation and thermal properties of oil-based nanofluid from multi-walled carbon nanotubes and engine oil as nano-lubricant. Int. Commun. Heat Mass Transf. 46, 142–147 (2013)

    Article  Google Scholar 

  4. Huang, H.D., Tu, J.P., Gan, L.P., Li, C.Z.: An investigation on tribological properties of graphite nanosheets as oil additive. Wear 261, 140–144 (2006)

    Article  Google Scholar 

  5. Joly-Pottuz, L., Matsumoto, N., Kinoshita, H., Vacher, B., Belin, M., Montagnac, G., Martin, J.M., Ohmae, N.: Diamond-derived carbon onions as lubricant additives. Tribol. Int. 41, 69–78 (2008)

    Article  Google Scholar 

  6. Viesca, J.L., Hernández Battez, A., González, R., Chou, R., Cabello, J.J.: Antiwear properties of carbon-coated copper nanoparticles used as an additive to a polyalphaolefin. Tribol. Int. 44, 829–833 (2011)

    Article  Google Scholar 

  7. Hernandez Battez, A., Fernandez Rico, J.E., Navas Arias, A., Viesca Rodriguez, J.L., Chou Rodriguez, R., Diaz Fernandez, J.M.: The tribological behaviour of ZnO nanoparticles as an additive to PAO6. Wear 261, 256–263 (2006)

    Article  Google Scholar 

  8. Ingole, S., Charanpahari, A., Kakade, A., Umare, S.S., Bhatt, D.V., Menghani, J.: Tribological behavior of nano TiO2 as an additive in base oil. Wear 301, 776–785 (2013)

    Article  Google Scholar 

  9. Ye, P., Jiang, X., Li, S., Li, S.: Preparation of NiMoO2S2 nanoparticle and investigation of its tribological behavior as additive in lubricating oils. Wear 253, 572–575 (2002)

    Article  Google Scholar 

  10. Narayanunni, V., Kheireddin, B.A., Akbulut, M.: Influence of surface topography on frictional properties of Cu surfaces under different lubrication conditions: comparison of dry, base oil, and ZnS nanowire-based lubrication system. Tribol. Int. 44, 1720–1725 (2011)

    Article  Google Scholar 

  11. Tenne, R., Margulis, L., Genut, M., Hodes, G.: Polyhedral and cylindrical structures of tungsten disulphide. Nature 360, 444–446 (1992)

    Article  Google Scholar 

  12. Hershfinkel, M., Gheber, L.A., Volterra, V., Hutchison, J.L., Margulis, L., Tenne, R.: Nested polyhedra of MX2 (M = W, Mo; X = S, Se) probed by high-resolution electron microscopy and scanning tunneling microscopy. J. Am. Chem. Soc. 116, 1914–1917 (1994)

    Article  Google Scholar 

  13. Margulis, L., Salitra, G., Tenne, R., Talianker, M.: Nested fullerene-like structures. Nature 365, 113–114 (1993)

    Article  Google Scholar 

  14. Rapoport, L., Feldman, Y., Homyonfer, M., Cohen, H., Sloan, J., Hutchison, J.L., Tenne, R.: Inorganic fullerene-like material as additives to lubricants: structure–function relationship. Wear 225–229(Part 2), 975–982 (1999)

    Article  Google Scholar 

  15. Joly-Pottuz, L., Dassenoy, F., Belin, M., Vacher, B., Martin, J.M., Fleischer, N.: Ultralow-friction and wear properties of IF-WS2 under boundary lubrication. Tribol. Lett. 18, 477–485 (2005)

    Article  Google Scholar 

  16. Joly-Pottuz, L., Martin, J.-M., Dassenoy, F., Belin, M., Montagnac, G., Reynard, B., Fleischer, N.: Pressure-induced exfoliation of inorganic fullerene-like WS2 particles in a Hertzian contact. J. Appl. Phys. 99, 023524 (2006)

    Article  Google Scholar 

  17. Lahouij, I., Vacher, B., Martin, J.-M., Dassenoy, F.: IF-MoS2 based lubricants: influence of size, shape and crystal structure. Wear 296, 558–567 (2012)

    Article  Google Scholar 

  18. Tannous, J., Dassenoy, F., Bruhács, A., Tremel, W.: Synthesis and tribological performance of novel MoxW1−xS2 (0 ≤ x ≤ 1) inorganic fullerenes. Tribol. Lett. 37, 83–92 (2010)

    Article  Google Scholar 

  19. Cizaire, L., Vacher, B., Le Mogne, T., Martin, J.M., Rapoport, L., Margolin, A., Tenne, R.: Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS2 nanoparticles. Surf. Coat. Technol. 160, 282–287 (2002)

    Article  Google Scholar 

  20. Kogovšek, J., Kalin, M.: Various MoS2-, WS2- and C-based micro- and nanoparticles in boundary lubrication. Tribol. Lett. 53, 585–597 (2014)

    Article  Google Scholar 

  21. Morina, A., Neville, A., Priest, M., Green, J.H.: ZDDP and MoDTC interactions and their effect on tribological performance—tribofilm characteristics and its evolution. Tribol. Lett. 24, 243–256 (2006)

    Article  Google Scholar 

  22. Lahouij, I., Dassenoy, F., Vacher, B., Martin, J.M.: Real time TEM imaging of compression and shear of single fullerene-like MoS2 nanoparticle. Tribol. Lett. 45, 131–141 (2012)

    Article  Google Scholar 

  23. Lahouij, I., Vacher, B., Dassenoy, F.: Direct observation by in situ transmission electron microscopy of the behaviour of IF-MoS2 nanoparticles during sliding tests: influence of the crystal structure. Lubr. Sci. 26(3), 163–173 (2013)

    Article  Google Scholar 

  24. Jenei, I., Svahn, F., Csillag, S.: Correlation studies of WS2 fullerene-like nanoparticles enhanced tribofilms: a scanning electron microscopy analysis. Tribol. Lett. 51, 461–468 (2013)

    Article  Google Scholar 

  25. Parigrahi, P.K., Pathak, A.: Microwave-assisted synthesis of WS2 nanowires through tetrathiotungstate precursors. Sci. Technol. Adv. Mater. 9, 045008–045014 (2008)

    Article  Google Scholar 

  26. Ratoi, M., Niste, V., Walker, J., Zekonyte, J.: Mechanism of action of WS2 lubricant nanoadditives in high-pressure contacts. Tribol. Lett. 52, 81–91 (2013)

    Article  Google Scholar 

  27. Nicholls, M., Bancroft, G.M., Norton, P., Kasrai, M., De Stasio, G., Frazer, B., Wiese, L.M.: Chemomechanical properties of antiwear films using X-ray absorption microscopy and nanoindentation techniques. Tribol. Lett. 17, 245–259 (2004)

    Article  Google Scholar 

  28. Spikes, H.: The history and mechanisms of ZDDP. Tribol. Lett. 17, 469–489 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Dassenoy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldana, P.U., Vacher, B., Le Mogne, T. et al. Action Mechanism of WS2 Nanoparticles with ZDDP Additive in Boundary Lubrication Regime. Tribol Lett 56, 249–258 (2014). https://doi.org/10.1007/s11249-014-0405-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-014-0405-1

Keywords

Navigation