Skip to main content
Log in

Reciprocating Wear Performance and Interfacial Microstructure of a TiC–Ni2AlTi Cermet

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Wear performance of a near equi-volume TiC–Ni2AlTi cermet with minor NiAl was evaluated by reciprocal sliding against Si3N4 balls. Both coefficient of friction (COF) and specific wear rate (SWR) decrease with the applied load in the range from 5 to 20 N, reaching minimums of 0.34 and 2.2 × 10−6 mm3/Nm, respectively, at 20 N. To understand the novel wear resistance, interfacial microstructure was investigated. As indicated by high resolution transmission electron microscopy observations, the interfaces are either coherent (TiC/NiAl and Ni2AlTi/NiAl) or semi-coherent (TiC/Ni2AlTi). Depending on the grain size of Ni2AlTi, two types of TiC/Ni2AlTi interface were observed. For the micrometer or sub-micrometer sized Ni2AlTi grains, the orientation relationship (OR) is (111) TiC ∥ (220) Ni2AlTi, [1\(\bar{1}\)0] TiC ∥ [1\(\bar{1}\)0] Ni2AlTi, while for the Ni2AlTi grains in tens of nanometers, the OR is (020) TiC ∥ (002) Ni2AlTi, [101] TiC ∥ [010] Ni2AlTi. The strongly bonded coherent and semi-coherent interfaces impede the failure of the heterophase boundaries, which accounts for the excellent wear resistance of the newly prepared cermet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Plucknett, K.P., Tiegs, T.N., Becher, P.F., Waters, S.B., Menchhofer, P.A.: Ductile Intermetallic Toughened Carbide Matrix Composites. In: Wachtman, J.B. (ed.) Proceedings of the 20th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures—A: Ceramic Engineering and Science Proceedings, pp. 314–321. Wiley, New York (2008)

    Google Scholar 

  2. Park, S., Kang, S.: Toughened ultra-fine (Ti, W)(CN)–Ni cermets. Scr. Mater. 52, 129–133 (2005)

    Article  Google Scholar 

  3. Hua, W., Wu, X., Shen, D., Lu, H., Polak, M.: HRTEM study of the microstructure of TiC0.6/NiAl composite. Intermetallics 11, 981–985 (2003)

    Article  Google Scholar 

  4. Plucknett, K.P., Becher, P.F., Subramanian, R.: Melt-infiltration processing of TiC/Ni3Al composites. J. Mater. Res. 12, 2515–2517 (1997)

    Article  Google Scholar 

  5. Wall, J., Choo, H., Tiegs, T.N., Liaw, P.K.: Thermal residual stress evolution in a TiC–50vol.% Ni3Al cermet. Mater. Sci. Eng., A 421, 40–45 (2006)

    Article  Google Scholar 

  6. Exner, H.E.: Physical and chemical nature of cemented carbides. Int. Mater. Rev. 24, 149–173 (1979)

    Article  Google Scholar 

  7. Zhang, H., Wang, X.H., Li, Z.J., Liu, M.Y., Zhou, Y.C.: A novel Ni2AlTi-containing composite with excellent wear resistance and anomalous flexural strength. Mater. Sci. Eng. A 597, 70–74 (2014)

    Article  Google Scholar 

  8. Buchholz, S., Farhat, Z.N., Kipouros, G.J., Plucknett, K.P.: Reciprocating wear response of Ti(C, N)–Ni3Al cermets. Can. Metall. Q. 52, 69–80 (2013)

    Article  Google Scholar 

  9. Hillig, W.B.: Strength and toughness of ceramic matrix composites. Annu. Rev. Mater. Sci. 17, 341–383 (1987)

    Article  Google Scholar 

  10. Faber, K.T.: Ceramic composite interfaces: properties and design. Annu. Rev. Mater. Sci. 27, 499–524 (1997)

    Article  Google Scholar 

  11. Chung, D.D.L.: Interface engineering for cement–matrix composites. Compos. Interfaces 8, 67–81 (2000)

    Article  Google Scholar 

  12. Sharma, M., Bijwe, J., Mitschang, P.: Wear performance of PEEK–carbon fabric composites with strengthened fiber–matrix interface. Wear 271, 2261–2268 (2011)

    Article  Google Scholar 

  13. Alpas, A.T., Zhang, J.: Effect of SiC particulate reinforcement on the dry sliding wear of aluminium–silicon alloys (A356). Wear 155, 83–104 (1992)

    Article  Google Scholar 

  14. Lee, G.Y., Dharan, C.K.H., Ritchie, R.O.: A physically-based abrasive wear model for composite materials. Wear 252, 322–331 (2002)

    Article  Google Scholar 

  15. Simm, W., Freti, S.: Abrasive wear of multiphase materials. Wear 129, 105–121 (1989)

    Article  Google Scholar 

  16. Sánchez, E., Bannier, E., Salvador, M.D., Bonache, V., García, J.C., Morgiel, J., Grzonka, J.: Microstructure and wear behavior of conventional and nanostructured plasma-sprayed WC–Co coatings. J. Therm. Spray Tech. 19, 964–974 (2010)

    Article  Google Scholar 

  17. Bonny, K., De Baets, P., Perez, Y., Vleugels, J., Lauwers, B.: Friction and wear characteristics of WC–Co cemented carbides in dry reciprocating sliding contact. Wear 268, 1504–1517 (2010)

    Article  Google Scholar 

  18. Onuoha, C.C., Kipouros, G.J., Farhat, Z.N., Plucknett, K.P.: The reciprocating wear behaviour of TiC–304L stainless steel composites prepared by melt infiltration. Wear 303, 321–333 (2013)

    Article  Google Scholar 

  19. Kumar, G.V., Rao, C., Selvaraj, N.: Mechanical and tribological behavior of particulate reinforced aluminum metal matrix composites—a review. J. Miner. Mater. Charact. Eng. 10, 59–91 (2011)

    Google Scholar 

  20. Wang, X.H., Song, S.L., Qu, S.Y., Zou, Z.D.: Characterization of in situ synthesized TiC particle reinforced Fe-based composite coatings produced by multi-pass overlapping GTAW melting process. Surf. Coat. Technol. 201, 5899–5905 (2007)

    Article  Google Scholar 

  21. Song, X., Gao, Y., Liu, X., Wei, C., Wang, H., Xu, W.: Effect of interfacial characteristics on toughness of nanocrystalline cemented carbides. Acta Mater. 61, 2154–2162 (2013)

    Article  Google Scholar 

  22. Yamamoto, T., Ikuhara, Y., Watanabe, T., Sakuma, T., Taniuchi, Y., Okada, K., Tanase, T.: High resolution microscopy study in Cr3C2-doped WC–Co. J. Mater. Sci. 36, 3885–3890 (2001)

    Article  Google Scholar 

  23. Weidow, J., Andrén, H.-O.: Grain and phase boundary segregation in WC–Co with TiC, ZrC, NbC or TaC additions. Int. J. Refract. Met. Hard Mater. 29, 38–43 (2011)

    Article  Google Scholar 

  24. Johansson, S.A.E., Wahnström, G.: A computational study of thin cubic carbide films in WC/Co interfaces. Acta Mater. 59, 171–181 (2011)

    Article  Google Scholar 

  25. Jia, K., Fischer, T.E.: Sliding wear of conventional and nanostructured cemented carbides. Wear 203–204, 310–318 (1997)

    Article  Google Scholar 

  26. Wang, Y., Hsu, S.M.: Wear and wear transition mechanisms of ceramics. Wear 195, 112–122 (1996)

    Article  Google Scholar 

  27. Yang, R., Leake, J.A., Cahn, R.W.: A microstructural study of a Ni2AlTi–Ni(Al, Ti)–Ni3(Al, Ti) three–phase alloy. J. Mater. Res. 6, 343–354 (1991)

    Article  Google Scholar 

  28. Whittenberger, J.D., Viswanadham, R.K., Mannan, S.K., Kumar, K.S.: 1200 to 1400 K slow strain rate compressive behaviour of small grain-size NiAl/Ni2AlTi alloys and NiAl/Ni2AlTi–TiB2 composites. J. Mater. Res. 4, 1164–1171 (1989)

    Article  Google Scholar 

  29. Liu, J.B., Zhang, L., Yao, D.W., Meng, L.: Microstructure evolution of Cu/Ag interface in the Cu–Ag filamentary nanocomposite. Acta Mater. 59, 1191–1197 (2011)

    Article  Google Scholar 

  30. Segall, M.D., Philip, J.D.L., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., Payne, M.C.: First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 2717–2744 (2002)

    Article  Google Scholar 

  31. Yang, Q., Lengauer, W., Koch, T., Scheerer, M., Smid, I.: Hardness and elastic properties of Ti(C x N1-x ), Zr(C x N1-x ) and Hf(C x N1-x ). J. Alloys Comp. 309, L5–L9 (2000)

    Article  Google Scholar 

  32. Yamaguchi, M., Umakoshi, Y., Yamane, T.: Plastic deformation of Ni2AlTi. Philos. Mag. A 50, 205–220 (1985)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Wang, X., Liu, M. et al. Reciprocating Wear Performance and Interfacial Microstructure of a TiC–Ni2AlTi Cermet. Tribol Lett 55, 211–218 (2014). https://doi.org/10.1007/s11249-014-0348-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-014-0348-6

Keywords

Navigation