Skip to main content
Log in

Dynamic In Situ Measurements of Frictional Heating on an Isolated Surface Protrusion

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Problems in the subject of frictional heating have been studied extensively, yet their complexity remains a barrier to further understanding. This study simplifies the frictional heating problem by examining the temperature rise due to a heat source of prescribed geometry. A single positive feature on the sliding face of the countersurface causes a local temperature rise. The cylindrical feature has a diameter of 150 µm and aspect ratio of 0.1 and slides under the larger contact area whose contact width is ~600 to ~750 µm. An infrared camera, acquiring at 870 Hz, observed the temperature rise at the contact interface between the feature and the rubber pin. The applied force for all tests was 200 mN, and the sliding velocity was varied from 10 to 200 mm/s. Maximum temperature rises of ~1–17 °C and average temperature rises of ~1–8 °C were measured. Measured values were compared to the Jaeger’s frictional heating models for sliding contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Grosch, K.A., Schallamach, A.: Tyre wear at controlled slip. Wear 4, 356 (1961)

    Article  Google Scholar 

  2. Grosch, K.A.: Relation between friction and visco-elastic properties of rubber. Proc. R. Soc. Lond. A-Math. Phys. Sci. 274(1356), 21 (1963). doi:10.1098/rspa.1963.0112

  3. Tabor, D.: The mechanism of rolling friction. II. The elastic range. Proc. R. Soc. Lond. 229(1177), 198–220 (1955)

    Article  Google Scholar 

  4. Lancaster, J.K.: Estimation of the limiting PV relationships for thermoplastic bearing materials. Tribology 4(2), 82–86 (1971). doi:10.1016/0041-2678(71)90136-9

    Article  Google Scholar 

  5. Barquins, M.: Rubber friction variation with rate and temperature: some new observations. Physics 19, 547–563 (1985)

    Google Scholar 

  6. Siroux, M., Kasem, H., Thevenet, J., Desmet, B., Dufrenoy, P.: Local temperatures evaluation on the pin–disc interface using infrared metrology. Int. J. Therm. Sci. 50(4), 486–492 (2011). doi:10.1016/j.ijthermalsci.2010.11.001

    Article  Google Scholar 

  7. Ingram, M., Reddyhoff, T., Spikes, H.A.: Thermal behaviour of a slipping wet clutch contact. Tribol. Lett. 41(1), 23–32 (2011). doi:10.1007/s11249-010-9669-2

    Article  Google Scholar 

  8. Bos, J., Moes, H.: Frictional heating of tribological contacts. J. Tribol. 117(1), 171–177 (1995)

    Article  Google Scholar 

  9. Bushan, B. (ed.): Modern Tribology Handbook, 1st edn. CRC Press LLC, Boca Raton (2001)

    Google Scholar 

  10. Gulino, R., Bair, S., Winer, W.O., Bhushan, B.: Temperature measurement of microscopic areas within a simulated head tape interface using infrared radiometric technique. J. Tribol. Trans. ASME 108(1), 29–34 (1986)

    Article  Google Scholar 

  11. Bair, S., Green, I., Bhushan, B.: Measurement of asperity temperatures of a read write head slider bearing in hard magnetic recording disks. J. Tribol. Trans. ASME 113(3), 547–554 (1991). doi:10.1115/1.2920658

  12. Santini, J.J., Kennedy Jr, F.E.: An experimental investigation of surface temperatures and wear in disk brakes. Lubr. Eng. 31(8), 402–417 (1974)

  13. Nagaraj, H.S., Sanborn, D.M., Winer, W.O.: Direct surface temperature measurement by infrared radiation in elastohydrodynamic contacts and the correlation with the Blok flash temperature theory. Wear 49(1), 43–59 (1978). doi:10.1016/0043-1648(78)90022-4

    Article  Google Scholar 

  14. Tong, H.M., Arjavalingam, G., Haynes, R.D., Hyer, G.N., Ritsko, J.J.: High-temperature thin-film Pt–Ir thermocouple with fast time response. Rev. Sci. Instrum. 58(5), 875–877 (1987). doi:10.1063/1.1139649

    Article  Google Scholar 

  15. Schreck, E., Fontana, R.E., Singh, G.P.: Thin-film thermocouple sensors for measurement of contact temperature during slider asperity interaction on magnetic recording disks. IEEE Trans. Magn. 28(5), 2548–2550 (1992). doi:10.1109/20.179552

    Article  Google Scholar 

  16. Kennedy, F.E., Frusescu, D., Li, J.: Thin film thermocouple arrays for sliding surface temperature measurement. Wear 207(1–2), 46–54 (1997). doi:10.1016/s0043-1648(96)07473-x

    Article  Google Scholar 

  17. Rowe, K.G., Bennett, A.I., Krick, B.A., Gregory Sawyer, W.: In situ thermal measurements of sliding contacts. Tribol Int 62(0), 208–214 (2013). doi:10.1016/j.triboint.2013.02.028

    Article  Google Scholar 

  18. Archard, J.F., Rowntree, R.A.: The temperature of rubbing bodies; part 2, the distribution of temperatures. Wear 128(1), 1–17 (1988). doi:10.1016/0043-1648(88)90249-9

    Article  Google Scholar 

  19. Archard, J.F.: The temperature of rubbing surfaces. Wear 2(6), 438–455 (1959). doi:10.1016/0043-1648(59)90159-0

    Article  Google Scholar 

  20. Schallamach, A.: How does rubber slide? Wear 17(4), 301–312 (1971)

    Article  Google Scholar 

  21. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids, 2nd edn. Clarendon Press, Oxford University Press, Oxford [Oxfordshire], New York (1986)

  22. Blok, H.: The dissipation of frictional heat. Appl. Sci. Res. 5(2), 151–181 (1955). doi:10.1007/bf03184615

    Google Scholar 

  23. Blok, H.: The flash temperature concept. Wear 6(6), 483–494 (1963). doi:10.1016/0043-1648(63)90283-7

    Article  Google Scholar 

  24. Blok, H.: Theoretical study of temperature rise at surfaces of actual contact under oiliness lubricating conditions. In: Proceedings of the General Discussion on Lubrication and Lubricants, vol. 2, pp. 222–235 (1937)

  25. Jaeger, J.C.: Moving sources of heat and the temperature at sliding contacts. J. Proc. R. Soc. N. S. W. 76, 203–224 (1942)

    Google Scholar 

  26. Kennedy, F.E., Hussaini, S.Z.: Thermo-mechanical analysis of dry sliding systems. Comput. Struct. 26(1–2), 345–355 (1987). doi:10.1016/0045-7949(87)90264-1

    Article  Google Scholar 

  27. Kennedy, F.: Frictional heating and contact temperatures. In: Modern Tribology Handbook, Two Volume Set. Mechanics & Materials Science. CRC Press, Boca Raton (2000)

  28. Tian, X.F., Kennedy, F.E.: Maximum and averate flash temperatures in sliding contacts. J. Tribol. Trans. ASME 116(1), 167–174 (1994). doi:10.1115/1.2927035

  29. Tian, X., Kennedy, F.: Contact surface temperature models for finite bodies in dry and boundary lubricated sliding. J. Tribol. 115(3), 411–418 (1993)

    Article  Google Scholar 

  30. Bansal, D.G., Streator, J.L.: On estimations of maximum and average interfacial temperature rise in sliding elliptical contacts. Wear 278–279, 18–27 (2012). doi:10.1016/j.wear.2011.12.006

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jon Bart Ten Hove at the University of Florida for his assistance with countersurface fabrication. Additionally, the authors would like to thank Dr. Dylan Morris and Olivier Gerardin for their useful insight and guidance throughout ideation and experimentation. This work was supported by Michelin North America and could not have been completed without the help of the Tribology Lab at the University of Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Gregory Sawyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennett, A.I., Rowe, K.G. & Gregory Sawyer, W. Dynamic In Situ Measurements of Frictional Heating on an Isolated Surface Protrusion. Tribol Lett 55, 205–210 (2014). https://doi.org/10.1007/s11249-014-0347-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-014-0347-7

Keywords

Navigation