Skip to main content
Log in

Elimination of Stick-Slip Motion in Sliding of Split or Rough Surface

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Here, we present a mass-less quasi-static model of stick-slip phenomenon built exclusively on the difference between higher static and lower kinetic friction force. The model allows explaining the disappearance of stick-slip motion when elastic surface slid in contact with rigid counter-face bears large amount of small outgrowths. Adjusting the model parameters, it is also possible simulating systems with different transient responses. The results obtained may also be helpful in understanding the variety of sliding behavior of different materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Scholz, C.H.: Earthquakes and friction laws. Nature 391, 37–42 (1998)

    Article  Google Scholar 

  2. Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116–1119 (2009)

    Article  Google Scholar 

  3. Moore, D.F.: Principles and Applications of Tribology. Pergamon, Oxford (1975)

    Google Scholar 

  4. Dowson, D.: History of tribology, 3rd edn. Wiley, Chicester (2013)

    Google Scholar 

  5. Rabinowicz, E.: The intrinsic variables affecting the stick-slip process. Proc. Phys. Soc. Lond. 71, 668–675 (1958)

    Article  Google Scholar 

  6. Rubinstein, S.M., Cohen, G., Fineberg, J.: Detachment fronts and the onset of dynamic friction. Nature 430, 1005–1009 (2004)

    Article  Google Scholar 

  7. Xia, K.W., Rosakis, A.J., Kanamori, H.: Laboratory earthquakes: the sub-Rayleigh-to-supershear rupture transition. Science 303, 1859–1861 (2004)

    Article  Google Scholar 

  8. Rubinstein, S.M., Cohen, G., Fineberg, J.: The dynamics of precursors to frictional sliding. Phys. Rev. Lett. 98, 226103 (2007)

    Article  Google Scholar 

  9. Yang, Z.P., Zhang, H.P., Marder, M.: Dynamics of static friction between steel and silicon. Proc. Natl. Acad. Sci. U.S.A. 105, 13264–13268 (2008)

    Article  Google Scholar 

  10. Ben-David, O., Rubinstein, S.M., Fineberg, J.: Slip-stick: the evolution of frictional strength. Nature 463, 76–79 (2010)

    Article  Google Scholar 

  11. Ben-David, O., Cohen, G., Fineberg, J.: The dynamics of the onset of frictional slip. Science 330, 211–214 (2010)

    Article  Google Scholar 

  12. Ben-David, O., Fineberg, J.: Static friction coefficient is not a material constant. Phys. Rev. Lett. 106, 254301 (2011)

    Article  Google Scholar 

  13. Capozza, R., Rubinstein, S.M., Barel, I., Urbakh, M., Fineberg, J.: Stabilizing stick-slip friction. Phys. Rev. Lett. 107, 024301 (2011)

    Article  Google Scholar 

  14. Bennewitz, R., David, J., de Lannoy, C.-F., Drevniok, B., Hubbard-Davis, P., Miura, T., Trichtchenko, O.: Dynamic strain measurements in a sliding microstructured contact. J. Phys. Condens. Mat. 20, 015004 (2008)

    Article  Google Scholar 

  15. Heywood, J.B.: Internal combustion engine fundamentals. McGraw-Hill, New York (1988)

    Google Scholar 

  16. Beutel, R.G., Gorb, S.N.: Ultrastructure of attachment specializations of Hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. J. Zool. Syst. Evol. Res. 39, 177–207 (2001)

    Article  Google Scholar 

  17. Autumn, K., Liang, Y.A., Hsieh, S.T., Zesch, W., Chan, W.P., Kenny, T.W., Fearing, R., Full, R.J.: Adhesive force of a single gecko foot-hair. Nature 405, 681–685 (2000)

    Article  Google Scholar 

  18. Geim, A.K., Dubonos, S.V., Grigorieva, I.V., Novoselov, K.S., Zhukov, A.A., Shapoval, S.Y.: Microfabricated adhesive mimicking gecko foot-hair. Nat. Mater. 2, 461–463 (2003)

    Article  Google Scholar 

  19. Peattie, A.M., Full, R.J.: Phylogenetic analysis of the scaling of wet and dry biological fibrillar adhesives. Proc. Natl. Acad. Sci. U.S.A. 104, 18595–18600 (2007)

    Article  Google Scholar 

  20. Varenberg, M., Murarash, B., Kligerman, Y., Gorb, S.N.: Geometry-controlled adhesion: revisiting the contact splitting hypothesis. Appl. Phys. A 103, 933–938 (2011)

    Article  Google Scholar 

  21. Schallamach, A.: How does rubber slide? Wear 17, 301–312 (1971)

    Article  Google Scholar 

  22. Varenberg, M., Gorb, S.: Shearing of fibrillar adhesive microstructure: friction and shear-related changes in pull-off force. J. R. Soc. Interface 4, 721–725 (2007)

    Article  Google Scholar 

  23. Varenberg, M., Gorb, S.: Hexagonal surface micropattern for dry and wet friction. Adv. Mater. 21, 483–486 (2009)

    Article  Google Scholar 

  24. Rand, C.J., Crosby, A.J.: Friction of soft elastomeric wrinkled surfaces. Appl. Phys. Lett. 106, 064913 (2009)

    Google Scholar 

  25. Murarash, B., Itovich, Y., Varenberg, M.: Tuning elastomer friction by hexagonal surface patterning. Soft Matter 7, 5553–5557 (2011)

    Article  Google Scholar 

  26. Brormann, K., Barel, I., Urbakh, M., Bennewitz, R.: Friction on a microstructured elastomer surface. Tribol. Lett. 50, 3–15 (2013)

    Article  Google Scholar 

  27. Lorenz, B., Persson, B.N.J.: On the origin of why static or breakloose friction is larger than kinetic friction, and how to reduce it: the role of aging, elasticity and sequential interfacial slip. J. Phys. Condens. Mat. 24, 225008 (2012)

    Article  Google Scholar 

  28. Zakharov, V.S.: Models of seismotectonic systems with dry friction. Mosc. Univ. Geol. Bull. 66, 13–20 (2011)

    Article  Google Scholar 

  29. Burridge, R., Knopoff, L.: Model and theoretical seismicity. Bull. Seismol. Soc. Am. 57, 341–371 (1967)

    Google Scholar 

  30. Carlson, J.M., Langer, J.M.: Properties of earthquakes generated by fault dynamics. Phys. Rev. Lett. 62, 2632–2635 (1989)

    Article  Google Scholar 

  31. Olami, Z., Feder, H.J.S., Christensen, K.: Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Phys. Rev. Lett. 68, 1244–1247 (1992)

    Article  Google Scholar 

  32. Persson, B.N.J.: Theory of friction: stress domains, relaxation, and creep. Phys. Rev. B. 51, 13568–13585 (1995)

    Article  Google Scholar 

  33. Braun, O.M., Barel, I., Urbakh, M.: Dynamics of transition from static to kinetic friction. Phys. Rev. Lett. 103, 194301 (2009)

    Article  Google Scholar 

  34. Tromborg, J., Scheibert, J., Amundsen, D.S., Thogersen, K., Malthe-Sorenssen, A.: Transition from static to kinetic friction: insights from a 2D model. Phys. Rev. Lett. 107, 074301 (2011)

    Article  Google Scholar 

  35. Akishin, P.G., Altaisky, M.V., Antoniou, I., Budnik, A.D., Ivanov, V.V.: Burridge-Knopoff model and self-similarity. Chaos Soliton. Fract. 11, 207–222 (2000)

    Article  Google Scholar 

  36. Bhushan, B.: Introduction to tribology, p. 208. Wiley, New York (2002)

    Google Scholar 

  37. Dyson, J., Hirst, W.: The true contact area between solids. P. Phys. Soc. B 67, 309–312 (1954)

    Article  Google Scholar 

  38. Persson, B.N.J.: On the theory of rubber friction. Surf. Sci. 401, 445–454 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of the Israel Science Foundation (Grant No. 314/12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Varenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kligerman, Y., Varenberg, M. Elimination of Stick-Slip Motion in Sliding of Split or Rough Surface. Tribol Lett 53, 395–399 (2014). https://doi.org/10.1007/s11249-013-0278-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0278-8

Keywords

Navigation