Skip to main content
Log in

Impact of Contact Materials and Operating Conditions on Stability of Micromechanical Switches

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Nano and micromechanical switches are of great interest in applications that require high speed, low-power consumption and high electrical isolation. There is strong evidence that airborne hydrocarbon accumulation on the contact surfaces of the switch is a key cause for device failure. Relatively unexplored contact materials such as RuO2 are of interest because they are believed to be less prone to hydrocarbon deposit accumulation than more commonly used materials such as Pt and Au. Here, we measure the reliability of RuO2 and Pt-coated microswitches in hydrocarbon-rich environments with N2 and N2:O2 background gases. The RuO2 material performs very poorly in contaminated N2, but very well in contaminated N2:O2. Furthermore, RuO2 performs much better than Pt in the contaminated N2:O2. It is demonstrated that the deposit, initially being an insulator, can be electrically broken-down, thereby substantially lowering switch resistance. It is further shown that the passage of electrical current through the contacts augments deposit accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Dennard, R.H., Gaensslen, F.H., Rideout, V.L., Bassous, E., LeBlanc, A.R.: Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid-State Circuits 9(5), 256–268 (1974)

    Article  Google Scholar 

  2. Brown, C., Liden, G.: Chips and Change: How Crisis Reshapes the Semiconductor Industry. MIT Press, Cambridge (2009)

    Google Scholar 

  3. Narendra, S., De, V., Borkar, S., Antoniadis, D.A., Chandraskasan, A.P.: Full-chip subthreshold leakage power prediction and reduction techniques for sub-0.18-μm CMOS. IEEE J. Solid-State Circuits 39(3), 501–510 (2004)

    Article  Google Scholar 

  4. Alioto, M.: Understanding DC behavior of subthreshold CMOS logic through closed-form analysis. IEEE Trans. Circuits Syst. I Regul. Pap. 57(7), 1597–1607 (2010)

    Article  Google Scholar 

  5. Liu, T.-J.K., Markovic, D., Stojanovic, V., Alon, E.: The relay reborn. IEEE Spectr. 49(4), 39–43 (2012)

    Google Scholar 

  6. Spencer, M., Chen, F., Wang, C.C., Nathanael, R., Fariborzi, H., Gupta, A., Kam, H., Pott, V., Jeon, J., King Liu, T.J., Markovic, D., Alon, E., Stojanovic, V.: Demonstration of integrated micro-electro-mechanical relay circuits for VLSI applications. IEEE J. Solid-State Circuits 46(1), 308–320 (2011)

    Article  Google Scholar 

  7. Lee, J.O., Song, Y.-H., Kim, M.-W., Kang, M.-H., Oh, J.-S., Yang, H.-H., Yoon, J.-B.: A sub-1-volt nanoelectromechanical switching device. Nat. Nanotechnol. 8, 36–40 (2013). doi:10.1038/nnano.2012.208

    Google Scholar 

  8. Loh, O.Y., Espinosa, H.D.: Nanoelectromechanical contact switches. Nat. Nanotechnol. 7(5), 283–295 (2012). doi:10.1038/Nnano.2012.40

    Article  CAS  Google Scholar 

  9. Proie, R.M., Polcawich, R.G., Pulskamp, J.S., Ivanov, T., Zaghloul, M.E.: Development of a PZT MEMS switch architecture for low-power digital applications. J. Microelectromech. Syst. 20(4), 1032–1042 (2011). doi:10.1109/Jmems.2011.2148160

    Article  CAS  Google Scholar 

  10. Czaplewski, D.A., Patrizi, G.A., Kraus, G.M., Wendt, J.R., Nordquist, C.D., Wolfley, S.L., Baker, M.S., de Boer, M.P.: A nanomechanical switch for integration with CMOS logic. J. Micromech. Microeng. 19(8) (2009). doi:10.1088/0960-1317/19/8/085003

  11. Sinha, N., Jones, T.S., Guo, Z., Piazza, G.: Body-biased complementary logic implemented using AlN piezoelectric MEMS switches. J. Microelectromech. Syst. 21(2), 484–496 (2012)

    Article  CAS  Google Scholar 

  12. Coutu, R.A., Kladitis, P.E., Leedy, K.D., Crane, R.L.: Selecting metal alloy electric contact materials for MEMS switches. J. Micromech. Microeng. 14(8), 1157–1164 (2004). doi:10.1088/0960/141/8/006

    Article  CAS  Google Scholar 

  13. Hacker, J.B., Mihailovich, R.E., Kim, M., DeNatale, J.F.: A Ka-band 3-bit RF MEMS true-time-delay network. IEEE Tech. Microw. Theory 51(1), 305–308 (2003). doi:10.1109/Tmtt.2002.806508

    Article  Google Scholar 

  14. Rebeiz, G.M.: RF MEMS: Theory, Design, and Technology. Wiley, New York (2004)

    Google Scholar 

  15. Yang, Z.Y., Lichtenwalner, D.J., Morris, A.S., Krim, J., Kingon, A.I.: Comparison of Au and Au–Ni alloys as contact materials for MEMS switches. J. Microelectromech. Syst. 18(2), 287–295 (2009). doi:10.1109/Jmems.2008.2010850

    Article  CAS  Google Scholar 

  16. Coutu, R.A., Kladitis, P.E., Starman, L.A., Reid, J.R.: A comparison of micro-switch analytic, finite element, and experimental results. Sensor. Actuat. A Phys. 115(2–3), 252–258 (2004). doi:10.1016/j.sna.2004.03.019

    Article  CAS  Google Scholar 

  17. Patton, S.T., Zabinski, J.S.: Fundamental studies of Au contacts in MEMS RF switches. Tribol. Lett. 18(2), 215–230 (2005). doi:10.1007/s11249-004-1778-3

    Article  CAS  Google Scholar 

  18. Patton, S.T., Zabinski, J.S.: Failure mechanisms of capacitive MEMS RF switch contacts. Tribol. Lett. 19(4), 265–272 (2005). doi:10.1007/s11249-005-7443-7

    Article  CAS  Google Scholar 

  19. Patton, S.T., Eapen, K.C., Zabinski, J.S., Sanders, J.H., Voevodin, A.A.: Lubrication of microelectromechanical systems radio frequency switch contacts using self-assembled monolayers. J. Appl. Phys. 102(2) (2007). doi:10.1063/1.2753594

  20. Slade, P.G.: Electrical Contacts: Principles and Application. Marcel Dekker, Inc., New York (1999)

    Google Scholar 

  21. Tringe, J.W., Uhlman, T.A., Oliver, A.C., Houston, J.E.: A single asperity study of Au/Au electrical contacts. J. Appl. Phys. 93(8), 4661–4669 (2003). doi:10.1063/1.1561998

    Article  CAS  Google Scholar 

  22. Walker, M., Nordquist, C., Czaplewski, D., Patrizi, G., McGruer, N., Krim, J.: Impact of in situ oxygen plasma cleaning on the resistance of Ru and Au–Ru based rf microelectromechanical system contacts in vacuum. J. Appl. Phys. 107(8) (2010). doi:10.1063/1.3353991

  23. Walker, M.J., Berman, D., Nordquist, C., Krim, J.: Electrical contact resistance and device lifetime measurements of Au–RuO2-based RF MEMS exposed to hydrocarbons in vacuum and nitrogen environments. Tribol. Lett. 44(3), 305–314 (2011). doi:10.1007/s11249-011-9849-8

    Article  CAS  Google Scholar 

  24. de Boer, M.P., Czaplewski, D.A., Baker, M.S., Wolfley, S.L., Ohlhausen, J.A.: Design, fabrication, performance and reliability of Pt- and RuO2-coated microrelays tested in ultra-high purity gas environments. J. Micromech. Microeng. 22(10) (2012). doi:10.1088/0960-1317/22/10/105027

  25. Coutu, R.A.: Electrostatic radio frequency (RF) microelectromechanical systems (MEMS) switches with metal alloy electric contacts. In. DTIC Document, (2004)

  26. Hermance, H.W., Egan, T.F.: Organic deposits on precious metal contacts. At&T Tech. J. 37(3), 739–776 (1958)

    CAS  Google Scholar 

  27. Somorjai, G.A., Li, Y.: Introduction to Surface Chemistry and Catalysis. Wiley, New York (2010)

    Google Scholar 

  28. Hyman, D., Mehregany, M.: Contact physics of gold microcontacts for MEMS switches. IEEE Trans. Compon. Pack. Tech. 22(3), 357–364 (1999). doi:10.1109/6144.796533

    Article  CAS  Google Scholar 

  29. Reagor, B.T., Seibles, L.: Structural-analysis of deuterated and non-deuterated frictional polymers using Fourier-transform infrared-spectroscopy and pyrolysis-gas chromatography-mass spectroscopy. IEEE Trans. Compon. Hybr. 4(1), 102–108 (1981). doi:10.1109/Tchmt.1981.1135773

    Article  Google Scholar 

  30. Antler, M.: Electrical effects of fretting connector contact materials: a review. Wear 106(1–3), 5–33 (1985). doi:10.1016/0043-1648(85)90101-2

    Article  CAS  Google Scholar 

  31. Jensen, B.D., Chow, L.L.W., Huang, K.W., Saitou, K., Volakis, J.L., Kurabayashi, K.: Effect of nanoscale heating on electrical transport in RF MEMS switch contacts. J. Microelectromech. Syst. 14(5), 935–946 (2005). doi:10.1109/Jmems.2005.0856653

    Article  CAS  Google Scholar 

  32. Rebeiz, G.M., Muldavin, J.B.: RF MEMS switches and switch circuits. Microw. Mag. IEEE 2(4), 59–71 (2001). doi:10.1109/6668.969936

    Article  Google Scholar 

  33. Parsa, R., Shavezipur, M., Lee, W.S., Chong, S., Lee, D., Wong, H.S.P., Maboudian, R., Howe, R.T.: Nanoelectromechanical relays with decoupled electrode and suspension. In: Micro electro mechanical systems (MEMS), 2011 IEEE 24th international conference on, 23–27 Jan 2011, pp. 1361–1364

  34. Dickrell, D.J., Dugger, M.T.: Electrical contact resistance degradation of a hot-switched simulated metal MEMS contact. IEEE Trans. Compon. Pack. Tech. 30(1), 75–80 (2007). doi:10.1109/Tcapt.2007.892074

    Article  CAS  Google Scholar 

  35. Campbell, W.E., Lee, R.E.: Polymer formation on sliding metals in air saturated with organic vapors. ASLE Trans. 5(1), 91–104 (1962). doi:10.1080/05698196208972456

    Article  CAS  Google Scholar 

  36. Rogers, D.B., Shannon, R.D., Sleight, A.W., Gillson, J.L.: Crystal Chemistry of metal dioxides with rutile-related structures. Inorg. Chem. 8(4), 841–& (1969). doi:10.1021/Ic50074a029

  37. Yokokawa, T., Yano, T., Kawakita, C., Hinohara, K., Nagai, A.: A study on the surface deactivation treatment of rhodium-plated contact reed switches. IEEE Trans. Compon. Hybr. 9(1), 124–127 (1986). doi:10.1109/Tchmt.1986.1136615

    Article  Google Scholar 

  38. Tyler, W.W., Wilson Jr, A.C.: Thermal conductivity, electrical resistivity, and thermoelectric power of graphite. Phys. Rev. 89(4), 870–875 (1953)

    Article  CAS  Google Scholar 

  39. Ieda, M.: Dielectric-breakdown process of polymers. IEEE Trans. Electr. Insul. 15(3), 206–224 (1980). doi:10.1109/Tei.1980.298314

    Article  Google Scholar 

  40. Vaughan, A.S., Hosier, I.L., Dodd, S.J., Sutton, S.J.: On the structure and chemistry of electrical trees in polyethylene. J. Phys. D Appl. Phys. 39(5), 962–978 (2006). doi:10.1088/0022-3727/39/5/011

    Article  CAS  Google Scholar 

  41. Germer, L.H., Smith, J.L.: Activation of electrical contacts by organic vapors. At&T Tech. J. 36(3), 769–812 (1957)

    CAS  Google Scholar 

  42. Neufeld, C.N., Rieder, W.F.: Carbon contamination of contacts due to organic vapors. Compon. Pack. Manuf. Technol. A IEEE Trans. 18(2), 399–404 (1995)

    Article  CAS  Google Scholar 

  43. Holm, R.: Electric Contacts Theory and Application, 4th edn. Springer, New York (1967)

    Book  Google Scholar 

  44. Broue, A., Fourcade, T., Dhennin, J., Courtade, F., Charvet, P.L., Pons, P., Lafontan, X., Plana, R.: Validation of bending tests by nanoindentation for micro-contact analysis of MEMS switches. J. Micromech. Microeng. 20(8) (2010). doi:10.1088/0960-1317/20/8/085025

  45. Coutu, R.A., Reid, J.R., Cortez, R., Strawser, R.E., Kladitis, P.E.: Microswitches with sputtered Au, AuPd, Au-on-AuPt, and AuPtCu alloy electric contacts. IEEE Trans. Compon. Pack. Tech. 29(2), 341–349 (2006). doi:10.1109/Tcapt.2006.0875898

    Article  CAS  Google Scholar 

  46. Frank P. Incropera, D.P.D., Theodore L. Bergman, Adrienne S. Lavine: Fundamentals of Heat and Mass Transfer, vol. v. 1. Wiley, New York (2007)

  47. Porter, R.S., Casale, A.: Recent studies of polymer reactions caused by stress. Polym. Eng. Sci. 25(3), 129–156 (1985). doi:10.1002/pen.760250302

    Article  CAS  Google Scholar 

  48. Caruso, M.M., Davis, D.A., Shen, Q., Odom, S.A., Sottos, N.R., White, S.R., Moore, J.S.: Mechanically-induced chemical changes in polymeric materials. Chem. Rev. 109(11), 5755–5798 (2009). doi:10.1021/Cr9001353

    Article  CAS  Google Scholar 

  49. Zhu, J., Yeap, K.B., Zeng, K.Y., Lu, L.: Nanomechanical characterization of sputtered RuO2 thin film on silicon substrate for solid state electronic devices. Thin Solid Films 519(6), 1914–1922 (2011). doi:10.1016/j.tsf.2010.10.014

    Article  CAS  Google Scholar 

  50. Lee, H., Coutu, R.A., Mall, S., Leddy, K.D.: Characterization of metal and metal alloy films as contact materials in MEMS switches. J. Micromech. Microeng. 16(3), 557–563 (2006). doi:10.1088/0960-1317/16/3/011

    Article  CAS  Google Scholar 

  51. Krishnakumari, B., Naseem, S., Dutt, N.V.K.: A method of estimating the standard Gibbs free-energy of formation. Can. J. Chem. Eng. 71(3), 489–491 (1993)

    Article  CAS  Google Scholar 

  52. Chang, R.: Chemistry, 8th edn. McGraw-Hill, New York (2004)

    Google Scholar 

  53. Chaikin, S.W.: On frictional polymer. Wear 10(1), 49–& (1967). doi:10.1016/0043-1648(67)90106-8

    Google Scholar 

  54. Bhushan, B., Hahn, F.W.: Stains on magnetic-tape heads. Wear 184(2), 193–202 (1995)

    Article  CAS  Google Scholar 

  55. Kumar, S., Srivastava, P.K.: Tribochemistry of lubrication issues of magnetic disk storage devices. Tribol. Int. 38(6–7), 687–691 (2005). doi:10.1016/j.triboint.2005.01.016

    Article  CAS  Google Scholar 

  56. Smith, J.C., Furey, M.J., Kajdas, C.: An exploratory-study of vapor-phase lubrication of ceramics by monomers. Wear 181, 581–593 (1995). doi:10.1016/0043-1648(94)07073-3

    Article  Google Scholar 

  57. Barnette, A.L., Asay, D.B., Ohlhausen, J.A., Dugger, M.T., Kim, S.H.: Tribochemical polymerization of adsorbed n-pentanol on SiO2 during rubbing: when does it occur and is it responsible for effective vapor phase lubrication? Langmuir 26(21), 16299–16304 (2010). doi:10.1021/La101481c

    Article  CAS  Google Scholar 

  58. Over, H.: Surface chemistry of ruthenium dioxide in heterogeneous catalysis and electrocatalysis: from fundamental to applied research. ChemInform 43(33), 3356–3426 (2012)

    Google Scholar 

  59. Assmann, J., Narkhede, V., Breuer, N.A., Muhler, M., Seitsonen, A.P., Knapp, M., Crihan, D., Farkas, A., Mellau, G., Over, H.: Heterogeneous oxidation catalysis on ruthenium: bridging the pressure and materials gaps and beyond. J. Phys. Condens. Mat. 20(18) (2008). doi:10.1088/0953-8984/20/18/184017

Download references

Acknowledgments

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. We acknowledge General Electric Corporation for providing funds to construct the test chamber.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarten P. de Boer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brand, V., Baker, M.S. & de Boer, M.P. Impact of Contact Materials and Operating Conditions on Stability of Micromechanical Switches. Tribol Lett 51, 341–356 (2013). https://doi.org/10.1007/s11249-013-0166-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0166-2

Keywords

Navigation