Skip to main content
Log in

Lubrication Mechanisms of Lamellar Fatty Acid Fluids

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The lubrication mechanisms of different lamellar fluids are investigated as they are introduced in the thin contact zone between two macroscopic surfaces in motion in a friction measurement set-up. We simultaneously measure the film thickness and its lubricative properties under controlled contact kinematics. The lamellar phases consist of nanometric flat bilayers of fatty acid surfactant molecules organized in periodic stacks separated by a water/ethylene diamine solution. First, we examine the film forming capability of these phases when the two surfaces are moving at the same velocity, i.e. in “pure rolling” conditions. We observe the growth of a thick film in the contact which eventually reaches a stable value. The relatively high viscosity of the film leads to a situation of so-called “starved lubrication”. By modelling the film build-up process, we determine the viscosity of the lubricant and its piezoviscosity. As shear is applied between the surfaces, the lubricant film exhibits a constant thickness and a rather low frictional response. We correlate this behaviour to the combination of a relatively high viscosity value together with a low piezoviscosity. Through the addition of a hydrophobic liquid (naphthenic oil) to the initial system, we increase the bilayer thickness whilst keeping the lamellar characteristic packing distance constant. This changes both the film forming capability and frictional behaviour of the lamellar fluid. We propose a model to account for the observed friction responses of both lamellar phases and discuss the shear localization in the lubricant film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Diat, O., Roux, D., Nallet, F.: Lamellar phase under shear: SANS measurements. J. Phys. IV 3, 193–204 (1993)

    Article  CAS  Google Scholar 

  2. Kosaka, Y., Ito, M., Kawabata, Y., Kato, T.: Lamellar-to-onion transition with increasing temperature under shear flow in a nonionic surfactant/water system. Langmuir 26, 3835–3842 (2010)

    Article  CAS  Google Scholar 

  3. Thiele, T., Berret, J.F., Muller, S., Schmidt, C.: Rheology and nuclear magnetic resonance measurements under shear of sodium dodecyl sulfate/decanol/water nematics. J. Rheol. 45, 29–48 (2001)

    Article  CAS  Google Scholar 

  4. Gentile, L., Rossi, C.O., Ollson, U., Ranieri, G.A.: Effect of shear rates on the MLV formation and MLV stability region in the C(12)E(5)/D(2)O system: rheology and Rheo-NMR and Rheo-SANS experiments. Langmuir 27, 2088–2092 (2011)

    Article  CAS  Google Scholar 

  5. Panizza, P., Soubiran, L., Coulon, C., Roux, D.: Conductivity of an inverse lyotropic lamellar phase under shear flow. Phys. Rev. E64, 21502 (2001)

    Google Scholar 

  6. Roux, D., Nallet, F., Diat, O.: Rheology of lyotropic lamellar phases. Europhys. Lett. 24, 53–58 (1993)

    Article  CAS  Google Scholar 

  7. Diat, O., Roux, D., Nallet, F.: Effect of shear on a lyotropic lamellar phase. J. Phys. II(3), 1427–1452 (1993)

    Google Scholar 

  8. Diat, O.: Effet du cisaillement sur les phases lyotropes: phases lamellaires et phases éponges. PhD thesis, University of Bordeaux (1992)

  9. de Gennes, P.G., Prost, J.: The physics of liquid crystals. Rev. Mod. Phys. 46(4), 597–616 (1974)

    Article  Google Scholar 

  10. Weigel, R., Läuger, J., Richtering, W., Lindner, P.: Anisotropic small angle light and neutron scattering from a lyotropic lamellar phase under shear. J. Phys. II 6(4), 529–542 (1996)

    Article  CAS  Google Scholar 

  11. Diat, O., Roux, D., Nallet, F.: ‘‘Layering’’ effect in a sheared lyotropic lamellar phase. Phys. Rev. E 51(4), 3296–3299 (1995)

    Article  CAS  Google Scholar 

  12. Zipfel, J., Lindner, P., Tsianou, M., Alexandridis, P., Richtering, W.: Shear induced structures in lamellar phases of amphiphilic block copolymers. Langmuir 15, 2599–2602 (1999)

    Article  CAS  Google Scholar 

  13. Zipfel, J., Berghausen, J., Schmidt, G., Lindner, P., Alexandridis, P., Richtering, W.: Influence of shear on solvated amphiphilic block copolymers with lamellar morphology. Macromolecules 35, 4064–4074 (2002)

    Article  CAS  Google Scholar 

  14. Berghausen, J., Zipfel, J., Lindner, P., Richtering, W.: Shear-induced orientations in a lyotropic defective lamellar phase. Europhys. Lett. 43(6), 683–689 (1998)

    Article  CAS  Google Scholar 

  15. Ruths, M., Steinberg, S., Israelachvili, J.N.: The effects of confinement and shear on the properties of thin films of thermotropic liquid crystal. Langmuir 12, 6637–6650 (1996)

    Article  CAS  Google Scholar 

  16. Cross, B., Crassous, J.: Rheological properties of a highly confined film of lyotropic lamellar phase. Eur. Phys. J. E14, 249–257 (2004)

    Google Scholar 

  17. Li, Y., Golan, Y., Martin-Herranz, A., Pelletier, O., Yasa, M., Israelachvili, J.N., Safinya, C.: In situ X-ray diffraction studies of a multilayered membrane fluid under confinement and shear. Int. J. Thermophys. 22, 1175–1184 (2001)

    Article  CAS  Google Scholar 

  18. Graca, M., Bongaerts, J.H.H., Stokes, J.R., Granick, S.: Nanotribology, standard friction, and bulk rheology properties compared for a Brij microemulsion. J. Colloid Interface Sci. 333, 628–634 (2009)

    Article  CAS  Google Scholar 

  19. Boschkova, K., Kronberg, B., Rutland, M., Imae, T.: Study of thin surfactant films under shear using the tribological surface force apparatus. Tribol. Int. 34, 815–822 (2001)

    Article  CAS  Google Scholar 

  20. Raviv, U., Klein, J.: Fluidity of bound hydration layers. Science 297, 1540–1543 (2002)

    Article  CAS  Google Scholar 

  21. Lagleize, J.M., Richetti, P., Drummond, C.: Effect of surfactant oligomerization degree on lubricant properties of mixed surfactant–diblock copolymer films. Tribol. Lett. 39, 31–38 (2010)

    Article  CAS  Google Scholar 

  22. Briscoe, W.G., Titmuss, S., Tiberg, F., Thomas, R.K., McGillivray, D.J., Klein, J.: Boundary lubrication under water. Nature 444, 191–194 (2006)

    Article  CAS  Google Scholar 

  23. Cognard, J.: Lubrication with liquid crystals in tribology and the liquid-crystalline state. In: Biresaw, G. (ed.) ACS Symposium Series 441, pp. 1–47. American Chemical Society, Washington (1990)

  24. Carrion, F.J., Martinez-Nicolas, G., Iglesias, P., Sanes, J., Bermudez, M.D.: Liquid crystals in tribology. Int. J. Mol. Sci. 10, 4102–4115 (2009)

    Article  CAS  Google Scholar 

  25. Nakano, K.: Scaling law on molecular orientation and effective viscosity of liquid-crystalline boundary films. Tribol. Lett. 14, 17–24 (2003)

    Article  CAS  Google Scholar 

  26. Oswald, P., Kléman, M.: Lubrication theory of smectic A phases. J. Phys. Lett. 43(12), 411–415 (1982)

    Article  CAS  Google Scholar 

  27. Fisher, T.E., Bhattacharia, S., Sahler, R., Lauer, J., Ahn, Y.J.: Lubrication by a smectic liquid crystal. Tribol. Trans. 31, 442–448 (1988)

    Article  Google Scholar 

  28. Lockwood, F.E., Benchaita, M.T., Friberg, S.E.: Study of lyotropic liquid crystals in viscometric flow and elastohydrodynamic contact. ASLE Trans. 30(4), 539–548 (1987)

    Article  CAS  Google Scholar 

  29. Friberg, S.E., Ward, A.J., Lockwood, F.E.: Lyotropic liquid-crystals in lubrication in tribology and the liquid-crystalline state. In Biresaw, G. (ed.) ACS Symposium Series 441, pp. 101–111. American Chemical Society, Washington (1990)

  30. Lee, H.S., Winoto, S.H., Winer, W.O., Chiu, M., Friberg, S.E.: Film thickness and frictional behavior of some liquid crystals in concentrated point contacts in tribology and the liquid-crystalline state. In Biresaw G. (ed.) ACS Symposium Series 441, pp. 113–125. American Chemical Society, Washington (1990)

  31. Shen, M.W., Luo, J.B., Wen, S.Z., Yao, J.B.: Nano-tribological properties and mechanisms of the liquid crystal as an additive. Chin. Sci. Bull. 46, 1227–1232 (2001)

    Article  CAS  Google Scholar 

  32. Shen, M.W., Luo, J.B., Wen, S.Z., Yao, J.B.: Investigation of the liquid crystal additive influence on the film formation in nano scale. Lubr. Eng. 58, 18–23 (2002)

    CAS  Google Scholar 

  33. Luo, J., Wen, S., Huang, P.: Thin film lubrication. Part I: Study on the transition between EHL and thin film lubrication using a relative optical interference intensity technique. Wear 194, 107–115 (1996)

    Article  CAS  Google Scholar 

  34. Boschkova, K., Elvesjö, J., Kronberg, B.: Frictional properties of lyotropic liquid crystalline mesophases at surfaces. Colloids Surf. A 166, 67–77 (2000)

    Article  CAS  Google Scholar 

  35. Renondeau, H.: Evolution des propriétés tribologiques et physico-chimiques d’une graisse polyurée dans un roulement à billes de roue. PhD thesis, École Centrale de Lyon (2004)

  36. Hollinger, S.: Comportement d’un lubrifiant aqueux dans un contact à très hautes pressions. Application au tréfilage de fils d’acier laitonnés. PhD thesis, École Centrale de Lyon (1999)

  37. Hollinger, S., Georges, J.M., Mazuyer, D., Lorentz, G., Aguerre, O., Nguyen, Du: High pressure lubrication with lamellar structures in aqueous lubricant. Tribol. Lett. 9(3–4), 143–151 (2000)

    CAS  Google Scholar 

  38. Bouré, Ph.: Lubrification et usure du contact fil/outil en tréfilage humide. PhD thesis, École Centrale de Lyon (1999)

  39. Bouré, Ph., Mazuyer, D., Georges, J.M., Lubrecht, A.A., Lorentz, G.: Formation of boundary layers with water-based lubricant in a concentrated elastohydrodynamic contact. Trans. ASME 124, 91–102 (2002)

    Google Scholar 

  40. Chevalier, F.: Modélisation des conditions d’alimentation dans les contacts EHD ponctuels. PhD thesis, INSA de Lyon (1996)

  41. Chevalier, F., Lubrecht, A.A., Cann, P.M.E., Colin, F., Dalmaz, G.: Film thickness in starved EHL point contacts. Trans. ASME 120, 126–133 (1998)

    CAS  Google Scholar 

  42. Bou-Chakra, E., Cayer-Barrioz, J., Mazuyer, D., Jarnias, F., Bouffet, A.: A non-Newtonian model based on Ree–Eyring theory and surface effect to predict friction in elastohydrodynamic lubrication. Tribol. Int. 43, 1674–1682 (2010)

    Article  CAS  Google Scholar 

  43. Fay, H., Meeker, S., Cayer-Barrioz, J., Mazuyer, D., Ly, I., Nallet, F., Desbat, B., Douliez, J.P., Ponsinet, V., Mondain-Monval, O.: Polymorphism of natural fatty acid liquid crystalline phases. Langmuir 28, 272–282 (2012)

    Article  CAS  Google Scholar 

  44. De Vicente, J., Stokes, J.R., Spikes, H.A.: The frictional properties of Newtonian fluids in rolling–sliding soft-EHL contact. Tribol. Lett. 20, 273–286 (2005)

    Article  Google Scholar 

  45. Shao, Z.S., Hsu, S.M., Wang, P.S.: Tribochemical and thermochemical reactions of stearic acid on copper surfaces studied by infra-red microspectroscopy. Tribol. Trans. 35(1), 189–193 (1992)

    Article  Google Scholar 

  46. Su, Y.Y.: Electrochemical study of the interaction between fatty acid and oxidised copper. Tribol. Int. 30(6), 423–428 (1997)

    Article  CAS  Google Scholar 

  47. Fisher, D.A., Huand, Z.S., Hu, S.M.: Molecular orientation and bonding of monolayer stearic acid on a copper surface prepared in air. Tribol. Lett. 3, 41–45 (1997)

    Article  Google Scholar 

  48. Fisher, D.A., Huand, Z.S., Hu, S.M.: Tribochemical and thermochemical reactions of stearic acid on copper surfaces in air as measured by ultrasoft X-ray absorption spectroscopy. Tribol. Lett. 3, 35–40 (1997)

    Article  Google Scholar 

  49. Fischbach, H.: Copper Wire Drawing Emulsions. Wire Industry, vol. 52, pp. 719–721 (1985)

  50. Shpenkov, G. P.: Friction surface phenomena. In: Dowson, D. (ed.) Tribology Series 29. Elsevier, Amsterdam (1995)

  51. Aksu, S., Doyle, F.M.: Electrochemistry of copper in aqueous ethylenediamine solutions. J. Electrochem. Soc. 149(7), B340–B347 (2002)

    Article  CAS  Google Scholar 

  52. Starodubets, E.E., Borisevich, S.V., Shapnik, M.S.: Structure of complexes forming over a wide pH range in the Zn(II)–En–H2O system. Russ. J. Inorg. Chem. 54(3), 453–458 (2009)

    Article  Google Scholar 

  53. Fay, H.: Films lubrifiants supramoléculaires organisés: de la microstructure aux propriétés tribologiques. PhD thesis, Université de Bordeaux (2011)

  54. Fay, H., Mondain-Monval, O., Ponsinet, V., Cayer-Barrioz, J., Mazuyer, D., Meeker, S., Le Cornec, P., Deroo, S.: On the correlation between model lubricant structure and its tribological behaviour. In: ESAFORM 2011. AIP Conference Proceedings 1353, pp. 1782–1787 (2011)

  55. Stachowiak, G.W., Batchelor, A.W.: Engineering Tribology. Tribology Series 24. Elsevier, Amsterdam (1993)

  56. Johnson, K.L.: Non-Newtonian effects in elastohydrodynamic lubrication. In: Dowson, D., et al. (eds.) Thin Films in Tribology. Proceedings of the 19th Leeds–Lyon Symposium on Tribology, pp. 15–26. Elsevier, New York (1993)

  57. Johnson, K.L., Tevaarwerk, J.L.: Shear behaviour of elastohydrodynamic oil films. Proc. R. Soc. Lond. A356, 215–236 (1977)

    Google Scholar 

  58. Johnson, K.L., Greenwood, J.A.: Thermal analysis of an Eyring fluid in elastohydrodynamic traction. Wear 61, 353–374 (1980)

    Article  Google Scholar 

  59. Grubin, A.N.: Fundamentals of the hydrodynamic theory of lubrication of heavily loaded cylindrical surfaces in investigation of the contact machine components. In: Ketova, Kh.F. (ed.) Translation of Russian Book No. 30. Central Scientific Institute for Technology and Mechanical Engineering, Moscow (1949)

  60. Mia, S.: Prediction of tribological and rheological properties of lubricating oil by sound velocity. PhD thesis, Saga University (2010)

  61. Höglund, E.: Influence of lubricant properties on elastohydrodynamic lubrication. Wear 232, 176–184 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Ph. Richetti from CRPP-CNRS UPR8641, S. Deroo, P. Le Cornec and A. Bourdette from Rhodia Company for fruitful discussions. We thank financial supports from CNRS, Rhodia Company and the Conseil Régional d’Aquitaine. Special thanks are also due to Grégoire Carle from ENSCBP for experimental assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Cayer-Barrioz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fay, H., Cayer-Barrioz, J., Mazuyer, D. et al. Lubrication Mechanisms of Lamellar Fatty Acid Fluids. Tribol Lett 46, 285–297 (2012). https://doi.org/10.1007/s11249-012-9951-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-9951-6

Keywords

Navigation