Skip to main content
Log in

Anisotropy Effects in Atomic-Scale Friction

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The static and kinetic friction experienced by a point mass elastically driven at different angles on surface lattices with square, hexagonal, and honeycomb symmetries are estimated by analytical and numeric calculations based on the Prandtl–Tomlinson (PT) model. Assuming a strong surface coupling, the anisotropy of static friction increases from 3.7 up to 46.3% when the density of packing of the surface atoms is reduced, but this is not the case for kinetic friction, the anisotropy of which is maximal on a square lattice. Although these results have not been supported by accurate experimental verifications so far, the PT model was successfully applied to interpret anisotropy effects in the friction force profiles measured, among other surfaces, on rectangular lattices with complex unit cells and on stepped crystal surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Overney, R.M., Takano, H., Fujihira, M., Paulus, W., Ringsdorf, H.: Anisotropy in friction and molecular stick-slip motion. Phys. Rev. Lett. 72, 3546–3549 (1994)

    Article  CAS  Google Scholar 

  2. Takano, H., Fujihira, M.: Study of molecular scale friction on stearic acid crystals by friction force microscopy. J. Vac. Sci. Technol. B 14, 1272–1275 (1996)

    Article  CAS  Google Scholar 

  3. Liley, M., Gourdon, D., Stamou, D., Meseth, U., Fischer, T.M., Lautz, C., Stahlberg, H., Vogel, H., Burnham, N.A., Duschl, C.: Friction anisotropy and asymmetry of a compliant monolayer induced by a small molecular tilte. Science 280, 273–275 (1998)

    Article  CAS  Google Scholar 

  4. Dienwiebel, M., Verhoeven, G.S., Pradeep, N., Frenken, J.W.M., Heimber, J.A., Zandbergen, H.W.: Superlubricity of graphite. Phys. Rev. Lett. 92(1–4), 126101 (2004)

    Article  Google Scholar 

  5. Park, J.Y., Ogletree, D.F., Salmeron, M., Ribeiro, R.A., Canfield, P.C., Jenks, C.J., Thiel, P.A.: High frictional anisotropy of periodic and aperiodic directions on a quasicrystal surface. Science 309, 1354–1356 (2005)

    Article  CAS  Google Scholar 

  6. Kalihari, V., Haugstad, G., Frisbie, C.D.: Distinguishing elastic shear deformation from friction on the surfaces of molecular crystals. Phys. Rev. Lett. 104(1–4), 086102 (2010)

    Article  Google Scholar 

  7. Campione, M., Fumagalli, E.: Friction anisotropy of the surface of organic crystals and its impact on scanning force microscopy. Phys. Rev. Lett. 105(1–4), 166103 (2010)

    Article  CAS  Google Scholar 

  8. Fessler, G., Zimmermann, I., Glatzel, T., Gnecco, E., Steiner, P., Roth, R., Keene, T.D., Liu, S.X., Decurtins, S., Meyer, E.: Orientation dependent molecular friction on organic layer compound crystals. Appl. Phys. Lett. 98(1–3), 083119 (2011)

    Article  Google Scholar 

  9. Verhoeven, G.S., Dienwiebel, M., Frenken, J.W.M.: Model calculations of superlubricity of graphite. Phys. Rev. B 70(1–10), 165418 (2004)

    Article  Google Scholar 

  10. Filippov, A.E., Vanossi, A., Urbakh, M.: Origin of friction anisotropy on a quasicrystal surface. Phys. Rev. Lett. 104(1–4), 074302 (2010)

    Article  Google Scholar 

  11. Müser, M.H.: Velocity dependence of kinetic friction in the Prandtl-Tomlinson model. Phys. Rev. B 84(1–13), 125419 (2011)

    Article  Google Scholar 

  12. Fajardo, O.Y., Mazo, J.J.: Effects of surface disorder and temperature on atomic friction. Phys. Rev. B 82(1–7), 035435 (2010)

    Article  Google Scholar 

  13. Fajardo, O.Y., Mazo, J.J.: Surface defects and temperature on atomic friction. J. Phys.: Condens. Matt. 23, 355008 (2011)

    Article  CAS  Google Scholar 

  14. Kerssemakers, J., De Hosson, J.T.M.: Atomic-force microscopy imaging of transition-metal layered compounds—a 2-dimensional stick–slip system. Appl. Phys. Lett. 67, 347–349 (1995)

    Article  CAS  Google Scholar 

  15. Hölscher, H., Schwarz, U.D., Wiesendanger, R.: Modelling of the scan process in lateral force microscopy. Surf. Sci. 375, 395–402 (1997)

    Article  Google Scholar 

  16. Hölscher, H., Raberg, W., Schwarz, U.D., Hasbach, A., Wandelt, K., Wiesendanger, R.: Imaging of sub-unit-cell structures in the contact mode of the scanning force microscope. Phys. Rev. B 59, 1661–1664 (1999)

    Article  Google Scholar 

  17. Steiner, P., Gnecco, E., Filleter, T., Gosvami, N.N., Maier, S., Meyer, E., Bennewitz, R.: Atomic friction investigations on ordered superstructures. Trib. Lett. 39, 321–327 (2010)

    Article  CAS  Google Scholar 

  18. Steiner, P., Roth, R., Gnecco, E., Baratoff, A., Meyer, E.: Angular dependence of static and kinetic friction on alkali halide surfaces. Phys. Rev. B 82(1–9), 205417 (2010)

    Article  Google Scholar 

  19. Gnecco, E.: Quasi-isotropy of static friction on hexagonal surface lattices. Europhys. Lett. 91(1–6), 66008 (2010)

    Article  Google Scholar 

  20. Braun, O.M., Ferrando, R.: Role of long jumps in surface diffusion. Phys. Rev. E 65(1–11), 061107 (2002)

    Article  CAS  Google Scholar 

  21. Pina, C.M., Miranda, R., Gnecco, E.: Anisotropic surface coupling while sliding on dolomite and calcite crystals. Phys. Rev. B 85(1–4), 073402 (2012)

    Article  Google Scholar 

  22. Hölscher, H., Ebeling, D., Schwarz, U.D.: Friction at atomic-scale surface steps: Experiment and theory. Phys. Rev. Lett. 101(1–4), 246105 (2008)

    Article  Google Scholar 

  23. Steiner, P., Gnecco, E., Krok, F., Budzioch, J., Walczak, L., Konior, J., Szymonski, M., Meyer, E.: Atomic-scale friction on stepped surfaces of ionic crystals. Phys. Rev. Lett. 106(1–4), 186104 (2011)

    Article  Google Scholar 

  24. Ehrlich, G., Hudda, F.G.: Atomic view of surface self-diffusion: Tungsten on tungsten. J. Chem. Phys. 44, 1039–1049 (1966)

    Article  CAS  Google Scholar 

  25. Schwöbel, R.L., Shipsey, E.J.: Step motion on crystal surfaces. J. Appl. Phys. 37, 3682–3686 (1966)

    Article  Google Scholar 

  26. Campione, M., Trabattoni, S., Moret, M.: Nanoscale mapping of frictional anisotropy. Trib. Lett. 45, 219–224 (2012)

    Article  Google Scholar 

  27. Zhao, X., Phillpot, S.R., Sawyer, W.G., Sinnott, S.B., Perry, S.S.: Transition from thermal to athermal friction under cryogenic conditions. Phys. Rev. Lett. 102(1–4), 186102 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

Prof. Riccardo Ferrando from the University of Genova is gratefully acknowledged for scientific discussion. Our collaboration was promoted thanks to the EUROCORES programme ‘Friction and Adhesion in Nanomechanical Systems’ (FANAS) of the European Science Foundation. OYF and JJM acknowledge Spain MICINN under Projects No. FIS2008-01240 and FIS2011-25167 cofinanced by FEDER funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Gnecco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gnecco, E., Fajardo, O.Y., Pina, C.M. et al. Anisotropy Effects in Atomic-Scale Friction. Tribol Lett 48, 33–39 (2012). https://doi.org/10.1007/s11249-012-9923-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-9923-x

Keywords

Navigation