Skip to main content
Log in

Tribometer for In Situ Scanning Electron Microscopy of Microstructured Contacts

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Here, we report on a special tribometer built to operate inside an environmental scanning electron microscope enabling charge-free imaging of non-conductive and/or hydrated materials. The device is intended to be used for simultaneous testing and in situ visual inspection of biological and biomimetic patterned surfaces during contact formation, pulling-off, peeling, and shearing modeling the behavior of biological microstructured attachment systems in nature. To demonstrate its performance, a simple array of hexagonal elastomer micropillars is tested. The results obtained show that direct link between precise data on the contact forces and images of the contact elements deformed by these forces indeed allows getting an insight into how contact surface patterns function when in contact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Creton, C., Gorb, S.: Sticky feet: from animals to materials. MRS Bull. 32, 466–472 (2007)

    Google Scholar 

  2. Scherge, M., Gorb, S.: Biological Micro- and Nanotribology: Nature’s Solutions. Springer, Berlin (2001)

    Google Scholar 

  3. Gorb, S.N.: Functional surfaces in biology: mechanisms and applications. In: Bar-Cohen, Y. (ed.) Biomimetics: Biologically Inspired Technologies, pp. 381–397. CRC Press, Boca Raton (2006)

    Google Scholar 

  4. Parness, A., Soto, D., Esparza, N., Gravish, N., Wilkinson, M., Autumn, K., Cutkosky, M.: A microfabricated wedge-shaped adhesive array displaying gecko-like dynamic adhesion, directionality and long lifetime. J. R. Soc. Interface 6, 1223–1232 (2009)

    Article  CAS  Google Scholar 

  5. Autumn, K., Liang, Y.A., Hsieh, S.T., Zesch, W., Chan, W.P., Kenny, T.W., Fearing, R., Full, R.J.: Adhesive force of a single gecko foot-hair. Nature 405, 681–685 (2000)

    Article  CAS  Google Scholar 

  6. Hui, C.Y., Glassmaker, N.J., Tang, T., Jagota, A.: Design of biomimetic fibrillar interfaces: 2. Mechanics of enhanced adhesion. J. R. Soc. Interface 1, 35–48 (2004)

    Article  Google Scholar 

  7. Jiao, Y., Gorb, S., Scherge, M.: Adhesion measured on the attachment pads of Tettigonia viridissima (Orthoptera Insecta). J. Exp. Biol. 203, 1887–1895 (2000)

    CAS  Google Scholar 

  8. Greiner, C., del Campo, A., Arzt, E.: Adhesion of bioinspired micropatterned surfaces: effects of pillar radius, aspect ratio, and preload. Langmuir 23, 3495–3502 (2007)

    Article  CAS  Google Scholar 

  9. Federle, W., Barnes, W.J.P., Baumgartner, W., Drechsler, P., Smith, J.M.: Wet but not slippery: boundary friction in tree frog adhesive toe pads. J. R. Soc. Interface 3, 689–697 (2006)

    Article  CAS  Google Scholar 

  10. Varenberg, M., Gorb, S.: Shearing of fibrillar adhesive microstructure: friction and shear-related changes in pull-off force. J. R. Soc. Interface 4, 721–725 (2007)

    Article  CAS  Google Scholar 

  11. Crosby, A.J., Hageman, M., Duncan, A.: Controlling polymer adhesion with “pancakes”. Langmuir 21, 11738–11743 (2005)

    Article  CAS  Google Scholar 

  12. Varenberg, M., Gorb, S.: Close-up of mushroom-shaped fibrillar adhesive microstructure: contact element behaviour. J. R. Soc. Interface 5, 785–789 (2008)

    Article  CAS  Google Scholar 

  13. Murphy, M.P., Aksak, B., Sitti, M.: Gecko-inspired directional and controllable adhesion. Small 5, 170–175 (2009)

    Article  CAS  Google Scholar 

  14. Gane, N., Bowden, F.P.: Microdeformation of solids. J. Appl. Phys. 39, 1432–1435 (1968)

    Article  CAS  Google Scholar 

  15. Guo, S.Y., Li, J., Mao, D.S., Xu, M.H., Mao, Z.Y.: The friction-wear behavior of Al2O3–TiC–Co advanced ceramic during in situ SEM. Wear 203–204, 319–324 (1997)

    Article  Google Scholar 

  16. Orso, S., Wegst, U.G.K., Eberl, C., Arzt, E.: Micrometer-scale tensile testing of biological attachment devices. Adv. Mater. 18, 874–877 (2006)

    Article  CAS  Google Scholar 

  17. Eberl, C., Saif, T.: In situ mechanical testing of biological and inorganic materials at the micro- and nanoscales. MRS Bull. 35, 347–350 (2010)

    Google Scholar 

  18. Varenberg, M., Peressadko, A., Gorb, S., Arzt, E., Mrotzek, S.: Advanced testing of adhesion and friction with a microtribometer. Rev. Sci. Instrum. 77, 066105 (2006)

    Google Scholar 

  19. Glassmaker, N.J., Jagota, A., Hui, C.-Y., Noderer, W.L., Chaudhury, M.K.: Biologically inspired crack trapping for enhanced adhesion. Proc. Natl. Acad. Sci. USA 104, 10786–10791 (2007)

    Article  CAS  Google Scholar 

  20. Varenberg, M., Gorb, S.: Hexagonal surface micropattern for dry and wet friction. Adv. Mater. 21, 483–486 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Grigory Halperin for the fruitful discussions, and Yan Itovich and Svetlana Yofis for the template preparation performed in clean room of the Technion Microelectronics Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Varenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murarash, B., Varenberg, M. Tribometer for In Situ Scanning Electron Microscopy of Microstructured Contacts. Tribol Lett 41, 319–323 (2011). https://doi.org/10.1007/s11249-010-9717-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-010-9717-y

Keywords

Navigation