Skip to main content
Log in

Correlation Between Adsorption/Desorption of Surfactant and Change in Friction of Stainless Steel in Aqueous Solutions Under Different Electrode Potentials

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Adsorption of sodium dodecyl sulfate (SDS) surfactant on the surface of gold or graphite in aqueous solutions has received extensive attention in the past. However, few studies have been done on the adsorption/desorption of SDS surfactant at surfaces of engineering materials as well as on their influence on friction behavior. In this article, quartz crystal microbalance (QCM), electrochemical spectroscopy, atomic force microscopy (AFM), lateral force microscopy (LFM), and ball-on-disc friction test have been jointly used to investigate the effects of electrode potential on adsorption and desorption of SDS surfactant, surfactant aggregate morphology on stainless steel surfaces, nanoscale and macroscale tribological behavior in dilute SDS aqueous solutions. Experiment results have shown that DS anions adsorb on the surface of the stainless steel electrode and form stripe-shaped aggregates at the open circuit potential (+0.03 V vs. SCE), which corresponds to a low friction coefficient. Under the negative potential of −0.4 V versus SCE, the adsorbed aggregates of DS anions are removed from the stainless steel surface, resulting in a high friction coefficient. By adjusting the electrode potential of stainless steel, both of the surfactant adsorption and tribological property can be controlled in a significant range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The given surface coverage is the average of the values obtained by Burgess et al. by electrochemistry and neutron reflectivity

References

  1. Swalen, J., Allara, D., Andrade, D., Chandross, E.A., Garoff, S., Israelachvili, J., McCarthy, T.J., Murray, R., Pease, R.F., Rabolt, J.F., Wynne, K.J., Yu, H.: Molecular monolayers and films. A panel report for the Materials Sciences Division of the Department of Energy. Langmuir 3, 932–950 (1987)

    Article  CAS  Google Scholar 

  2. Xiao, X., Hu, J., Charych, D.H., Salmeron, M.: Chain length dependence of the frictional properties of alkylsilane molecules self-assembled on mica studied by atomic force microscopy. Langmuir 12, 235–237 (1996)

    Article  CAS  Google Scholar 

  3. Sato, H., Homma, T., Kudo, H., Izumi, T., Osaka, T., Shoji, S.: Three-dimensional microfabrication process using Bi electrodeposition for a highly sensitive X-ray imaging sensor. J. Electroanal. Chem. 584, 28–33 (2005)

    Article  CAS  Google Scholar 

  4. Hong, Y., Patri, U.B., Ramakrishan, S., Rog, D., Babu, S.V.: Utility of dodecyl sulfate surfactants as dissolution inhibitors in chemical mechanical planarization of copper. J. Mater. Res. 20, 3413–3424 (2005)

    Article  CAS  Google Scholar 

  5. Walderhaug, H.: Structures in a microemulsion system of an ethoxylated polymethylsiloxane surfactant, water, and oil studied by NMR self-diffusion measurements. J. Phys. Chem. B 111, 9821–9827 (2007)

    Article  CAS  Google Scholar 

  6. Wanless, E.J., Ducker, W.A.: Weak influence of divalent ions on anionic surfactant surface-aggregation. Langmuir 13, 1463–1474 (1997)

    Article  CAS  Google Scholar 

  7. Wanless, E.J., Davey, T.W., Ducker, W.A.: Surface aggregate phase transition. Langmuir 13, 4223–4228 (1997)

    Article  CAS  Google Scholar 

  8. Burgess, I., Jeffrey, C.A., Cai, X., Szymanski, G., Galus, Z., Lipkowski, J.: Direct visualization of the potential-controlled transformation of hemimicellar aggregates of dodecyl sulfate into a condensed monolayer at the Au(111) electrode surface. Langmuir 15, 2607–2616 (1999)

    Article  CAS  Google Scholar 

  9. Sek, S., Chen, M., Brosseau, C.L., Lipkowski, J.: In situ STM study of potential-driven transition in the film of a cationic surfactant adsorbed on a Au(111) electrode surface. Langmuir 23, 12529–12534 (2007)

    Article  CAS  Google Scholar 

  10. Burgess, I., Zamlynny, V., Szymanski, G., Lipkowshi, J., Majewski, J., Smith, G., Satija, S., Ivkov, R.: Electrochemical and neutron reflectivity characterization of dodecyl sulfate adsorption and aggregation at the gold–water interface. Langmuir 17, 3355–3367 (2001)

    Article  CAS  Google Scholar 

  11. Karlsson, P.M., Palmqvist, A.E.C., Holmberg, K.: Adsorption of sodium dodecyl sulfate and sodium dodecyl phosphate on aluminum, studied by QCM-D, XPS, and AAS. Langmuir 24, 13414–13419 (2008)

    Article  CAS  Google Scholar 

  12. Vakarelski, I.U., Brown, S.C., Rabinovich, Y.I., Moudgil, B.M.: Lateral force microscopy investigation of surfactant-mediated lubrication from aqueous solution. Langmuir 20, 1724–1731 (2004)

    Article  CAS  Google Scholar 

  13. Naderi, A., Claesson, P.M.: Adsorption properties of polyelectrolyte-surfactant complexes on hydrophobic surfaces studied by QCM-D. Langmuir 22, 7639–7645 (2006)

    Article  CAS  Google Scholar 

  14. Soares, D.M., Gomes, W.E., Tenan, M.A.: Sodium dodecyl sulfate adsorbed monolayers on gold electrodes. Langmuir 23, 4383–4388 (2007)

    Article  CAS  Google Scholar 

  15. Petri, M., Kolb, D.M.: Nanostructuring of a sodium dodecyl sulfate-covered Au(111) electrode. Phys. Chem. Chem. Phys. 4, 1211–1216 (2002)

    Article  CAS  Google Scholar 

  16. Schulz, J.C., Warr, G.G.: Adsorbed layer structure of cationic and anionic surfactants on mineral oxide surfaces. Langmuir 18, 3191–3197 (2002)

    Article  CAS  Google Scholar 

  17. Atkin, R., Craig, V.S.J., Wanless, E.J., Biggs, S.J.: The influence of chain length and electrolyte on the adsorption kinetics of cationic surfactants at the silica–aqueous solution interface. Colloid Interface Sci. 266, 236–244 (2003)

    Article  CAS  Google Scholar 

  18. Levchenko, A.A., Argo, B.P., Vidu, R., Talroze, R.V., Stroeve, P.: Kinetics of sodium dodecyl sulfate adsorption on and desorption from self-assembled monolayers measured by surface plasmon resonance. Langmuir 18, 8464–8471 (2002)

    Article  CAS  Google Scholar 

  19. Tulpar, A., Ducker, W.A.J.: Surfactant adsorption at solid-aqueous intrefaces containing fixed charges: experiments revealing the role of surface charge density and surface charge regulation. Phys. Chem. B 108, 1667–1676 (2004)

    Article  CAS  Google Scholar 

  20. Hu, K., Bard, A.J.: Characterization of adsorption of sodium dodecyl sulfate on charge-regulated substrates by atomic force microscopy force measurements. Langmuir 13, 5418–5425 (1997)

    Article  CAS  Google Scholar 

  21. Sigal, G.B., Mrksich, M., Whitesides, G.M.: Using surface plasmon resonance spectroscopy to measure the association of detergents with self-assembled monolayers of hexadecanethiolate on gold. Langmuir 13, 2749–2755 (1997)

    Article  CAS  Google Scholar 

  22. Retter, U., Tchachnikova, M.: On the formation of surface micelles at the metal electrolyte interface. J. Electroanal. Chem. 550–551, 201–208 (2003)

    Article  Google Scholar 

  23. Retter, U.: One-dimensional nucleation-growth-collision in the formation of surface hemimicelles of amphiphiles. Langmuir 16, 7752–7756 (2000)

    Article  CAS  Google Scholar 

  24. Norman, L.L., Badia, A.: Electrochemical surface plasmon resonance investigation of dodecyl sulfate adsorption to electroactive self-assembled monolayers via ion-pairing interactions. Langmuir 23, 10198–10208 (2007)

    Article  CAS  Google Scholar 

  25. Burgess, I. J. M. Sc.: Thesis, University of Guelph, 2000

  26. Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids. Clarendon Press, Oxford (1950)

    Google Scholar 

  27. Brandon, N.P., Bonanos, N., Fogarty, P.O., Mahmood, M.N.: The effect of interfacial potential on friction in a model aqueous lubricant. J. Electrochem. Soc. 139, 3489–3492 (1992)

    Article  CAS  Google Scholar 

  28. Zhu, Y.Y., Kelsall, G.H., Spikes, H.A.: The influence of electrochemical potentials on the friction and wear of iron and iron oxides in aqueous systems. Tribol. Trans. 37, 811–819 (1994)

    Article  CAS  Google Scholar 

  29. Chang, Q., Meng, Y., Wen, S.: Influence of interfacial potential on the tribological behavior of brass/silicon dioxide rubbing couple. Appl. Surf. Sci. 202, 120–125 (2002)

    Article  CAS  Google Scholar 

  30. Meng, Y., Hu, B., Chang, Q.: Control of local friction of metal/ceramic couples in aqueous solutions with an electrochemical method. Wear 260, 305–309 (2006)

    Article  CAS  Google Scholar 

  31. Sauerbrey, G.: Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 155, 206–222 (1959)

    Article  CAS  Google Scholar 

  32. Bizzotto, D., Lipkowski, J.: Electrochemical and spectroscopic studies of the mechanism of monolayer and multilayer adsorption of an insoluble surfactant at the Au(111) electrolyte interface. J. Electroanal. Chem. 409, 33–43 (1996)

    Article  Google Scholar 

  33. Wanless, E.J., Ducker, W.A.: Organization of sodium dodecyl sulfate at the graphite-solution interface. J. Phys. Chem. 100, 3207–3214 (1996)

    Article  CAS  Google Scholar 

  34. Aniansson, E.A.G., Wall, S.N., Almegren, M., Hoffmann, H., Kielmann, H., Ulbricht, W., Zana, R., Lang, J., Tondre, C.: Theory of the kinetics of micellar equilibria and quantitative interpretation of chemical relaxation studies of micellar solutions of ionic surfactants. J. Phys. Chem. 80, 905–922 (1976)

    Article  CAS  Google Scholar 

  35. Lianos, P., Zana, R.: Fluorescence probe studies of the effect of concentration on the state of aggregation of surfactants in aqueous solution. J. Colloid Interface Sci. 84, 100–107 (1981)

    Article  CAS  Google Scholar 

  36. Zhao, J., Fung, B.M.: NMR study of the transformation of sodium dodecyl sulfate micelles. Langmuir 9, 1228–1231 (1993)

    Article  CAS  Google Scholar 

  37. Reiss-Husson, F., Luzzati, V.: The structure of the micellar solutions of some amphiphilic compounds in pure water as determined by absolute small-angle X-ray scattering techniques. J. Phys. Chem. 68, 3504–3511 (1964)

    Article  CAS  Google Scholar 

  38. Ducker, W.A., Grant, L.M.: Effect of substrate hydrophobicity on surfactant surface–aggregate geometry. J. Phys. Chem. 100, 11507–11511 (1996)

    Article  CAS  Google Scholar 

  39. Greenwood, F.G., Parfitt, G.D., Picton, N.H., Wharton, D.G.: Adsorption from aqueous solution. In: Weber, W.J., Matijevic, E. (eds.) Advance in Chemistry, pp. 135–144. American Chemical Society, Washington, DC (1968)

    Google Scholar 

  40. Bizzotto, D., Lipkowski, J.: Amphiphiles at electrified interfaces. Prog Colloid Polym Sci 103, 201–215 (1997)

    Article  CAS  Google Scholar 

  41. Lee, S., Shon, Y.-S., Colorado Jr., R., Guenard, R.L., Lee, T.R., Perry, S.S.: The influence of packing densities and surface order on the frictional properties of alkanethiol self-assembled monolayers (SAMs) on gold: a comparison of SAMs derived from normal and spiroalkanedithiols. Langmuir 16, 2220–2224 (2000)

    Article  CAS  Google Scholar 

  42. Clear, S.C., Nealey, P.F.: Lateral force microscopy study of the frictional behavior of self-assembled monolayers of octadecyltrichlorosilane on silicon/silicon dioxide immersed in n-alcohols. Langmuir 17, 720–732 (2001)

    Article  CAS  Google Scholar 

  43. He, S., Meng, Y., Tian, Y., Zuo Y.: Response characteristics of the potential-controlled friction of ZrO2/stainless steel tribopairs in sodium dodecyl sulfate aqueous solutions. Tribol. Lett. (2010). doi :10.1007/s11249-010-9587-3

Download references

Acknowledgment

This work was supported by grants (50823003 and 50721004) from the NSFC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggang Meng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, S., Meng, Y. & Tian, Y. Correlation Between Adsorption/Desorption of Surfactant and Change in Friction of Stainless Steel in Aqueous Solutions Under Different Electrode Potentials. Tribol Lett 41, 485–494 (2011). https://doi.org/10.1007/s11249-010-9604-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-010-9604-6

Keywords

Navigation