Skip to main content
Log in

Effect of Cu Content on the Structure, and Performance of Substoichiometric Cr–N Coatings

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Cu–Cr–N coatings with Cu contents between 3 and 65 at.%, Cu/Cr ratios in the 0.04–4.5 range and 21–27 at.% N, synthesized by twin electron-beam Physical Vapor Deposition at 450 °C, were investigated and compared against substoichiometric Cr–N reference samples. The main objective of this study is to study the influence of Cu on the structure, and the subsequent effects on the mechanical properties, room (22 °C) and high temperature (500 and 840 °C) tribological performance of Cu–Cr–N coatings. Using X-ray photoelectron spectroscopy, glancing angle X-ray diffraction and scanning electron microscopy, in combination with nanoindentation mechanical property measurements and laboratory-controlled ball-on-disc sliding experiments, it is shown that Cu–Cr–N coatings with low Cu content (3 at.%) possess sufficient wear resistance for high-temperature demanding tribological applications. The lubricious effect of oxide formation at high temperatures is also evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kim, K., Korsunsky, A.M.: Exponential evolution law of fretting wear damage in low-friction coatings for aerospace components. Surf. Coat. Technol. 202, 5838–5846 (2008)

    Article  CAS  Google Scholar 

  2. Marple, B.R., Voyer, J., Thibodeau, M., Nagy, D.R., Vassen, R.: Hot corrosion of lanthanum zirconate and partially stabilized zirconia thermal barrier coatings. J. Eng. Gas Turbines Power 128, 144–152 (2006)

    Article  CAS  Google Scholar 

  3. Oka, Y.I., Yoshida, T., Yamada, Y., Yasui, T., Hata, S.: Evaluation of erosion and fatigue resistance of ion plated chromium nitride applied to turbine blades. Wear 263, 379–385 (2007)

    Article  CAS  Google Scholar 

  4. Willmann, H., Mayrhofer, P.H., Persson, P.O.A., Reiter, A.E., Hultman, L., Mitterer, C.: Thermal stability of Al-Cr-N hard coatings. Scr. Mater. 54, 1847–1851 (2006)

    Article  CAS  Google Scholar 

  5. Endrino, J.L., Derflinger, V.: The influence of alloying elements on the phase stability and mechanical properties of AlCrN coatings. Surf. Coat. Technol. 200, 988–992 (2005)

    Article  CAS  Google Scholar 

  6. Reiter, A.E., Derflinger, V.H., Hanselmann, B., Bachmann, T., Sartory, B.: Investigation of the properties of Al1−xCrxN coatings prepared by cathodic arc evaporation. Surf. Coat. Technol. 200, 2114–2122 (2005)

    Article  CAS  Google Scholar 

  7. Hones, P., Sanjinés, R., Lévy, F.: Sputter deposited chromium nitride based ternary compounds for hard coatings. Thin Solid Films 332, 240–246 (1998)

    Article  CAS  ADS  Google Scholar 

  8. Barshilia, H.C., Selvakumar, N., Deepthi, B., Rajam, K.S.: A comparative study of reactive direct current magnetron sputtered CrAlN and CrN coatings. Surf. Coat. Technol. 201, 2193–2201 (2006)

    Article  CAS  Google Scholar 

  9. Hong, Y.S., Lee, Y.S.: A comparative study of Cr–X–N (X=Zr, Si) coatings for the improvement of the low-speed torque efficiency of a hydraulic piston pump. Met. Mater. Int. 14(1), 33–40 (2008)

    Article  CAS  Google Scholar 

  10. Kim, S.M., Kim, B.S., Kim, G.S., Lee, S.Y., Lee, B.Y.: Evaluation of the high temperature characteristics of the CrZrN coatings. Surf. Coat. Technol. 202(22–23), 5521–5525 (2008)

    Article  CAS  Google Scholar 

  11. Baker, M.A., Klose, S., Rebholz, C., Leyland, A., Matthews, A.: Evaluating the microstructure and performance of nanocomposite PVD TiAlBN coatings. Surf. Coat. Technol. 151–152, 338–343 (2002)

    Article  Google Scholar 

  12. Voevodin, A.A., Zabinski, J.S.: Supertough wear-resistant coatings with ‘chameleon’ surface adaptation. Thin Solid Films 370, 223–231 (2000)

    Article  CAS  ADS  Google Scholar 

  13. Veprek, S.: The search for novel, superhard materials. J. Vac. Sci. Technol. A 17, 2401–2420 (1999)

    Article  CAS  ADS  Google Scholar 

  14. Ezirmik, V., Senel, E., Kazmanli, K., Erdemir, A., Urgen, M.: Effect of copper addition on the temperature dependent reciprocating wear behaviour of CrN coatings. Surf. Coat. Technol. 202, 866–870 (2007)

    Article  CAS  Google Scholar 

  15. Baker, M.A., Kench, P., Gibson, P.N., Leyland, A., Matthews, A.: Investigation of the nanostructure and wear properties of physical vapor deposited CrCuN nanocomposite coatings. J. Vac. Sci. Technol. 23(3), 423–433 (2005)

    Article  CAS  ADS  Google Scholar 

  16. Joseph, M.C., Tsotsos, C., Baker, M.A., Kench, P.J., Rebholz, C., Matthews, A., Leyland, A.: Characterisation and tribological evaluation of nitrogen-containing molybdenum–copper PVD metallic nanocomposite films. Surf. Coat. Technol. 190, 345–356 (2005)

    Article  CAS  Google Scholar 

  17. Zhu, X., Dou, H., Ban, Z., Liu, Y., He, J.: Repeated impact test for characterization of hard coatings. Surf. Coat. Technol. 201, 5493–5497 (2007)

    Article  CAS  Google Scholar 

  18. Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)

    Article  CAS  ADS  Google Scholar 

  19. High Temperature Tribometer, Pin-on-disk Friction and Wear (Tribology) Measurement to 1000°C, Advanced Mechanical Technology, Incorporated (AMTI), Watertown, MA, USA, 1988. www.amtiweb.com. Accessed: 14 Jan 2010

  20. Kuo, Y.-C., Lee, J.-W., Wang, C.-J., Chang, Y.-J., Kuo, Y.-C., Lee, J.-W., Wang, C.-J., Chang, Y.-J.: The effect of Cu content on the microstructures, mechanical and antibacterial properties of Cr–Cu–N nanocomposite coatings deposited by pulsed DC reactive magnetron sputtering. Surf. Coat.Technol. 202, 854–860 (2007)

    Article  CAS  Google Scholar 

  21. Li, Z.G., Miyake, S., Kumagai, M., Saito, H., Muramatsu, Y.: Hard nanocomposite Ti–Cu–N films prepared by d.c. reactive magnetron co-sputtering. Surf. Coat. Technol. 183, 62–68 (2004)

    Article  CAS  Google Scholar 

  22. Hsieh, J.H., Wang, C.M., Li, C.: Deposition and characterization of TaN–Cu nanocomposite thin films. Surf. Coat. Technol. 200, 3179–3183 (2006)

    Article  CAS  Google Scholar 

  23. Myung, H.S., Lee, H.M., Shaginyan, L.R., Han, J.G.: Microstructure and mechanical properties of Cu doped TiN superhard nanocomposite coatings. Surf. Coat. Technol. 163–164, 591–596 (2003)

    Article  Google Scholar 

  24. Polychronopoulou, K., Neidhardt, J., Rebholz, C., Baker, M.A., O’Sullivan, M., Reiter, A.E., Gunnaes, A.E., Giannakopoulos, K., Mitterer, C.: Synthesis and characterization of Cr–B–N coatings deposited by reactive arc evaporation. J. Mater. Res. 23(11), 3048–3055 (2008)

    Article  CAS  Google Scholar 

  25. Baker, M.A.: Advanced characterisation of nanocomposite coatings. Surf. Coat. Technol. 201, 6105–6111 (2007)

    Article  CAS  Google Scholar 

  26. Veprek, S., Jilek, M.: Super- and ultrahard nanocomposite coatings: generic concept for their preparation, properties and industrial applications. Vacuum 67, 443–449 (2002)

    Article  CAS  Google Scholar 

  27. Musil, J., Vleck, J.: Magnetron sputtering of alloy and alloy-based films. Thin Solid Films 343–344, 47–50 (1999)

    Article  Google Scholar 

  28. Tsotsos, C., Kanakis, K., Davison, A., Baker, M.A., Matthews, A., Leyland, A.: Mechanical and tribological properties of CrTiCu(B, N) glassy-metal coatings deposited by reactive magnetron sputtering. Surf. Coat. Technol. 200, 4601–4611 (2006)

    Article  CAS  Google Scholar 

  29. Sanjines, R., Hones, P.: Hexagonal nitride coatings: electronic and mechanical properties of V2N, Cr2N and δ-MoN. Thin Solid Films 332, 225–229 (1998)

    Article  CAS  ADS  Google Scholar 

  30. Zeman, P., Čerstvý, R., Mayrhofer, P.H., Mitterer, C., Musil, J.: Structure and properties of hard and superhard Zr-Cu-N nanocomposite coatings. Mater. Sci. Eng. A 289, 189–197 (2000)

    Article  Google Scholar 

  31. Musil, J., Daniel, R.: Structure and mechanical properties of magnetron sputtered Zr–Ti–Cu–N films. Surf. Coat. Technol. 166, 243–253 (2003)

    Article  CAS  Google Scholar 

  32. Musil, J., Leipner, I., Kolega, M.: Nanocrystalline and nanocomposite CrCu and CrCu–N films prepared by magnetron sputtering. Surf. Coat. Technol. 115, 32–37 (1999)

    Article  CAS  Google Scholar 

  33. Musil, J., Vlcek, J., Zeman, P., Setsuhara, Y., Miyake, S., Konuma, S., Kumagai, M., Mitterer, C.: Morphology and microstructure of hard and superhard Zr–Cu–N nanocomposite coatings. Jpn. J. Appl. Phys. 41, 6529–6533 (2002)

    Article  CAS  ADS  Google Scholar 

  34. Baker, M.A., Kench, P.J., Joseph, M.C., Tsotsos, C., Leyland, A., Matthews, A.: The nanostructure and mechanical properties of PVD CrCu(N) coatings. Surf. Coat. Technol. 162, 222–227 (2003)

    Article  CAS  Google Scholar 

  35. Ahn, H.S., Kwon, O.K.: Tribological behaviour of plasma-sprayed chromium oxide coating. Wear 225–229, 814–824 (1999)

    Article  Google Scholar 

  36. Li, M., Feng, C., Wang, F.: Effect of partial pressure of reactive gas on chromium nitride and chromium oxide deposited by arc ion plating. Trans. Nonferrous Met. Soc. China 16, S276–S279 (2006)

    Google Scholar 

  37. Prakash, B., Celis, J.P.: The lubricity of oxides revised based on a polarisability approach. Tribol. Lett. 27, 105–112 (2007)

    Article  CAS  Google Scholar 

  38. Dimitrov, V., Komatsu, T.: Classification of simple oxides: a polarisability approach. J. Sol. State Chem. 163, 100–112 (2002)

    Article  CAS  ADS  Google Scholar 

  39. Dimitrov, V., Komatsu, T.: Classification of simple oxides: a polarisability approach. J. Sol. State Chem. 178, 831–846 (2005)

    Article  CAS  ADS  Google Scholar 

  40. Erdemir, A., Li, S., Jin, Y.: Relation of certain quantum chemical parameters to lubrication behavior of solid oxides. Int. J. Mol. Sci. 6, 203–218 (2005)

    Article  CAS  Google Scholar 

  41. Suszko, T., Gulbinski, W., Jagielski, J.: Mo2N/Cu thin films—the structure, mechanical and tribological properties. Surf. Coat. Technol. 200, 6288–6292 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Air Conditioning and Refrigeration Center, an Industry-University Cooperative Research Center at the University of Illinois at Urbana-Champaign, the Center for Microanalysis of Materials, University of Illinois at Urbana-Champaign, which is partially supported by the U.S. Department of Energy under Grant DEFG02-91-ER45439, and the use of coating deposition equipment at TECVAC LTD, Cambridge, UK. K. Polychronopoulou and C. Rebholz gratefully acknowledge financial support from the European Commission (FP6 Marie Curie Actions Project EXT-0023899—NanoHeaters) and the Cyprus Fulbright Commission through a 2007 Fellowship for Advanced Research in the USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyriaki Polychronopoulou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polychronopoulou, K., Demas, N.G., Gibson, P.N. et al. Effect of Cu Content on the Structure, and Performance of Substoichiometric Cr–N Coatings. Tribol Lett 38, 57–68 (2010). https://doi.org/10.1007/s11249-009-9572-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-009-9572-x

Keywords

Navigation