Skip to main content
Log in

Multivariable Modeling of Impact-Abrasion Wear Rates in Metal Matrix-Carbide Composite Materials

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Carbide-matrix hardfacings reinforced with spherical and angular particles of different size and density have been investigated about correlation of their specific material parameters—especially matrix hardness and microstructure parameters—with the wear rates in continuous impact abrasion test (CIAT). For this study, 12 different hardfacings have been characterized by the quantitative metallographic method for determination of specific structural parameters, such as the mean carbide diameter, carbide area fraction, and a distribution parameter of inter-particle distances (L IPD). Results showed the high influence of the matrix hardness on the CIAT wear resistance followed by effect of the mean particle size. The length of inter-particle distance (L IPD) has exhibited stronger additional effect on CIAT wear rate than carbide area fraction, whereas particle form (spherical or angular) showed no significant differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. zum Gahr, K.-H.: Microstructure and Wear of Materials. Elsevier Science Publishers B.V, Amsterdam (1987)

    Google Scholar 

  2. Pagounis, E., Lindroos, V.K.: Processing and properties of particulate reinforced steel matrix composites. Mater. Sci. Eng. A 246, 221–234 (1998)

    Article  Google Scholar 

  3. Van Acker, K., Vanhoyweghen, D., Persoons, R., Vangrunderbeek, J.: Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings. Wear 258, 194–202 (2005)

    Article  Google Scholar 

  4. Kirchgaßner, M.: Verhalten von Eisenbasis-Hartauftragungen bei abrasiv-schlagendem erosivem Verschleiß, Ph.D. Thesis, Vienna University of Technology (2008)

  5. Kirchgaßner, M., Badisch, E., Franek, F.: Behaviour of iron-based hardfacing alloys under abrasion and impact. Wear 265, 772–779 (2008)

    Article  Google Scholar 

  6. Badisch, E., Kirchgaßner, M.: Influence of welding parameters on microstructure and wear behaviour of a typical NiCrBSi hardfacing alloy reinforced with tungsten carbide. Surf. Coat. Technol. 202, 6016–6022 (2008)

    Article  CAS  Google Scholar 

  7. Chatterjee, S., Pal, T.K.: Solid particle erosion behaviour of hardfacing deposits on cast iron-influence of deposit microstructure and erodent particles. Wear 261, 1069–1079 (2006)

    Article  CAS  Google Scholar 

  8. Badisch, E., Mitterer, C.: Abrasive wear of high speed steels: influence of abrasive particles and primary carbides on wear resistance. Tribol. Int. 36, 765–770 (2003)

    Article  CAS  Google Scholar 

  9. Wang, S.-H., Chen, J.-Y., Xue, L.: A study of the abrasive wear behaviour of laser-clad tool steel coatings. Surf. Coat. Technol. 200, 3446–3458 (2006)

    Article  CAS  Google Scholar 

  10. Buytoz, S.: Microstructural properties of M7C3 eutectic carbides in Fe–Cr–C alloy. Mater. Lett. 60, 605–608 (2006)

    Article  CAS  Google Scholar 

  11. Kim, C.K., Lee, S., Jung, J.Y., Ahn, S.: Effects of complex carbide fraction on high-temperature wear properties of hardfacing alloys reinforced with complex carbides. Mater. Sci. Eng. A 349, 1–11 (2003)

    Article  Google Scholar 

  12. Buchanan, V.E., McCartney, D.G., Shipway, P.H.: A comparison of the abrasive wear behaviour of iron-chromium based hardfaced coatings deposited by SMAW and electric arc spraying. Wear 264, 542–549 (2007)

    Article  Google Scholar 

  13. Dogan, Ö.N., Hawk, J.A., Tylczak, J.H., Wilson, R.D., Govier, R.D.: Wear of titanium carbide reinforced metal matrix composites. Wear 225–229, 758–769 (1999)

    Google Scholar 

  14. Chatterjee, S., Pal, T.K.: Wear behaviour of hardfacing deposits on cast iron. Wear 255, 417–425 (2003)

    Article  CAS  Google Scholar 

  15. Berns, H.: Microstructural properties of wear resistant alloys. Wear 181, 271–279 (1995)

    Google Scholar 

  16. Zhou, R., Jiang, Y., Lu, D.: The effect of volume fraction of WC particles on erosion resistance of WC reinforced iron matrix surface composites. Wear 255, 134–138 (2003)

    Article  CAS  Google Scholar 

  17. Shin, J.C., Doh, J.M., Yoon, J.K., Lee, D.Y., Kim, J.S.: Effect of molybdenum on the microstructure and wear resistance of cobalt-base stellite hardfacing alloys. Surf. Coat. Technol. 166, 117–126 (2003)

    Article  CAS  Google Scholar 

  18. Sapate, S.G., Rao, A.V.R.: Effect of carbide volume fraction on erosive wear behaviour of hardfacing cast irons. Wear 256, 774–786 (2004)

    Article  CAS  Google Scholar 

  19. Buchely, M.F., Gutierrez, J.C., Leon, L.M., Toro, A.: The effect of microstructure on abrasive wear of hardfacing alloys. Wear 259, 52–61 (2005)

    Article  CAS  Google Scholar 

  20. St-Georges, L.: Development and characterization of composite Ni–Cr+WC laser cladding. Wear 263, 562–566 (2007)

    Article  CAS  Google Scholar 

  21. Polak, R., Ilo, S., Badisch, E.: Relation between inter-particle distance (LIPD) and abrasion in multiphase matrix-carbide materials. Tribol. Lett. 33, 29–35 (2009)

    Article  CAS  Google Scholar 

  22. Wilson, R.D., Hawk, J.A.: Impeller wear impact-abrasive wear test. Wear 225–229, 1245–1257 (1999)

    Google Scholar 

  23. Sundström, A., Rendóna, J., Olsson, M.: Wear behaviour of some low alloyed steels under combined impact/abrasion contact conditions. Wear 250, 744–754 (2001)

    Article  Google Scholar 

  24. Tylczak, J.H., Hawk, J.A., Wilson, R.D.: A comparison of laboratory abrasion and field wear results. Wear 225–229, 1059–1069 (1999)

    Article  Google Scholar 

  25. Hawk, J.A., Wilson, R.D., Tylczak, J.H., Dog˘an, Ö.N.: Laboratory abrasive wear tests: investigation of test methods and alloy correlation. Wear 225–229, 1031–1042 (1999)

    Article  Google Scholar 

  26. Lahaye, C.T.W.: Daily routine quantitative assessment of microstructure of steel by image analysis. Mater. Charact. 36, 191–202 (1996)

    Article  CAS  Google Scholar 

  27. Larsen, A.W., Jensen, D.J.: Automatic determination of recrystallization parameters in metals by electron backscatter pattern line scans. Mater. Charact. 51, 271–282 (2003)

    Article  CAS  Google Scholar 

  28. Wojnar, L., Kurzydlowski, K.J., Janusz, S.: Quantitative image analysis. In: Voort, G.V. (ed.) Metallography and Microstructures, ASM Handbook, 9th edn, pp. 403–427. ASM International, Ohio (2004)

    Google Scholar 

Download references

Acknowledgments

This study was founded from the “Austrian Kplus-Program” (governmental funding program for pre-competitive research) via the Austrian Research Promotion Agency (FFG) and the TecNet Capital GmbH (Province of Niederösterreich) and has been carried out within the “Austrian Center of Competence for Tribology” (AC²T research GmbH). The authors are also grateful to Busatis GmbH and Castolin Ges.m.b.H. for active research cooperation as well as strong know-how input which supports the basis for research at high quality level.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Badisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badisch, E., Ilo, S. & Polak, R. Multivariable Modeling of Impact-Abrasion Wear Rates in Metal Matrix-Carbide Composite Materials. Tribol Lett 36, 55–62 (2009). https://doi.org/10.1007/s11249-009-9458-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-009-9458-y

Keywords

Navigation