Skip to main content
Log in

Dry-sliding Tribological Properties of Nano-Eutectic Fe83B17 Alloy

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

This paper reports the tribological performance of the nano-eutectic Fe83B17 alloy under dry sliding against Si3N4 ceramic ball in ambient environment with varying applied loads and sliding speeds. Worn surfaces of the nano-eutectic Fe83B17 alloy were examined with a scanning electron microscope (SEM) and an X-ray energy dispersive spectroscope (EDS). The wear debris of the samples were also analyzed by X-ray diffractometer (XRD). The wear rate of the nano-eutectic Fe83B17 alloy was of the magnitude of 10−4 mm3/m, which was lower than that of the coarse grained Fe83B17 alloy. The friction coefficient of the nano-eutectic Fe83B17 alloy was almost the same as that of the coarse grained Fe83B17 alloy. The Fe2SiO4 oxide layer was formed on the worn surface of the nano-eutectic Fe83B17 alloy. However, on the worn surface of the coarse grained Fe83B17 alloy was found only a little Fe2SiO4. These results demonstrated that the nanostructure improved the wear resistance of the Fe83B17 alloy, but did not significantly affect the friction coefficient. The wear mechanism of the nano-eutectic Fe83B17 alloy was delamination abrasion mainly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Trelewicz, J.R., Schuh, C.A.: The Hall-Petch breakdown in nanocrystalline metals: a crossover to glass-like deformation. Acta Mater. 45, 5948–5958 (2007). doi:10.1016/j.actamat.2007.07.020

    Article  Google Scholar 

  2. Kumar, K.S., V-Swygenhoven, H., Suresh, S.: Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743–5774 (2003). doi:10.1016/j.actamat.2003.08.032

    Article  CAS  Google Scholar 

  3. Meyers, M.A., Mishra, A., Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427–556 (2006). doi:10.1016/j.pmatsci.2005.08.003

    Article  CAS  Google Scholar 

  4. Mishra, R., Basu, B., Balasubramaniam, R.: Effect of grain size on the tribological behavior of nanocrystalline nickel. Mater. Sci. Eng. A 373, 370–373 (2004). doi:10.1016/j.msea.2003.09.107

    Article  Google Scholar 

  5. Wang, Z.B., Tao, N.R., Li Wang, S., Liu, G., Lu, J., Lu, K.: Effect of surface nanocrystallization on friction and wear properties in low carbon steel. Mater. Sci. Eng. A 352, 144–149 (2003). doi:10.1016/S0921-5093(02)00870-5

    Article  Google Scholar 

  6. Lin, Y., Lu, J., Wang, L., Xu, T., Xue, Q.: Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel. Acta Mater. 54, 5599–5605 (2006). doi:10.1016/j.actamat.2006.08.014

    Article  CAS  Google Scholar 

  7. Zhang, Y.S., Wang, K., Han, Z., Liu, G.: Dry sliding wear behavior of copper with nano-scaled twins. Wear 262, 1463–1470 (2007). doi:10.1016/j.wear.2007.01.012

    Article  CAS  Google Scholar 

  8. Yang, J., Ma, J.Q., Bi, Q.L., Liu, W.M., Xue, Q.J.: Tribological properties of Fe3Al material under water environment. Mater. Sci. Eng. A 490, 90–94 (2008). doi:10.1016/j.msea.2008.01.024

    Article  Google Scholar 

  9. Passamani, E.C., Tagarro, J.R.B.: Thermal studies and magnetic properties of mechanical alloyed Fe2B. J. Phys. D Condens. Matter 14, 1975–1983 (2002). doi:10.1088/0953-8984/14/8/325

    Article  ADS  CAS  Google Scholar 

  10. Lovas, A., Varga, L.K., Koszo, E.K., Kovac, J.: Inhomogeneities and basic magnetic properties in Fe-B glassy alloys. IEEE Trans. Magn. 30, 467–469 (1994). doi:10.1109/20.312305

    Article  ADS  CAS  Google Scholar 

  11. Fdez, M.L., Garcia, A., Barandiaran, J.M., Lopez, R., Orue, I., Gorria, P., Pizzini, S., Fontaine, A.: Local structure and ferromagnetic character of Fe-B and Fe-P amorphous alloys. Phys. Rev. B 62, 5746–5750 (2000). doi:10.1103/PhysRevB.62.5746

    Article  ADS  Google Scholar 

  12. Palumbo, M., Cacciamani, G., Bosco, E., Baricco, M.: Driving forces for crystal nucleation in Fe-B liquid and amorphous alloys. Intermetallics 11, 1293–1299 (2003). doi:10.1016/S0966-9795(03)00171-7

    Article  CAS  Google Scholar 

  13. Iakovou, R., Bourithis, L., Papadimitriou, G.: Synthesis of boride coatings on steel using plasma transferred arc (PTA) process and its wear performance. Wear 252, 1007–1015 (2002). doi:10.1016/S0043-1648(02)00056-X

    Article  CAS  Google Scholar 

  14. Galvanetto, E., Borgioli, F., Bacci, T., Pradelli, G.: Wear behaviour of iron boride coatings produced by VPS technique on carbon steels. Wear 260, 825–831 (2006). doi:10.1016/j.wear.2005.04.005

    Article  CAS  Google Scholar 

  15. Yu, L.G., Chen, X.J., Khor, K.A., Sundararajan, G.: FeB/Fe2B phase transformation during SPS pack-boriding: boride layer growth kinetics. Acta Mater. 53, 2361 (2005). doi:10.1016/j.actamat.2005.01.043

    Article  CAS  Google Scholar 

  16. Sen, S., Ozbek, I., Sen, U., Bindal, C.: Mechanical behavior of borides formed on borided cold work tool steel. Surf. Coat. Tech. 135, 173–177 (2001). doi:10.1016/S0257-8972(00)01064-1

    Article  CAS  Google Scholar 

  17. Pertek, A., Kulka, M.: Characterization of single tracks after laser surface modification of borided 41Cr4 steel. Appl. Surf. Sci. 205, 137–142 (2003). doi:10.1016/S0169-4332(02)01012-7

    Article  ADS  CAS  Google Scholar 

  18. Moore, J.J., Feng, H.J.: Combustion synthesis of advanced materials: part I. Reaction parameters. Prog. Mater. Sci. 39, 243–273 (1995). doi:10.1016/0079-6425(94)00011-5

    Article  CAS  Google Scholar 

  19. La, P.Q., Yang, J., Cockayne, D.J.H., Liu, W.M., Xue, Q.J., Li, Y.D.: Bulk nanocrystalline Fe3Al-based material prepared by aluminothermic reaction. Adv. Mater. 18, 733–736 (2006). doi:10.1002/adma.200501684

    Article  CAS  Google Scholar 

  20. Fu, L.C., Yang, J., Bi, Q.l., Li, L.J., Liu, W.M.: Microstructure and mechanical behavior of nano-eutectic Fe83B17 alloy prepared by a self-propagating high temperature synthesis combining rapid solidification. J. Phys. D Appl. Phys. 41, 235401–235405 (2008). doi:10.1088/0022-3727/41/23/235401

    Article  ADS  Google Scholar 

  21. Jahanmir, S.: Friction and Wear of Ceramics. Marcel Dekker, New York (1990)

    Google Scholar 

  22. La, P.Q., Ma, J.Q., Zhu, Y.T., Yang, J., Liu, W.M., Xue, Q.J., Valiev, R.Z.: Dry-sliding tribological properties of ultrafine-grained Ti prepared by severe plastic deformation. Acta Mater. 53, 5167–5173 (2005). doi:10.1016/j.actamat.2005.07.031

    Article  CAS  Google Scholar 

  23. Yang, J., Bi, Q.L., Liu, W.M., Xue, Q.J.: Tribological properties of FeAl intermetallics under dry sliding. Wear 257, 104–109 (2004). doi:10.1016/j.wear.2003.10.012

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (50801064) and the National 973 Project of China (2007CB607601).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Yang or Weimin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, L., Yang, J., Bi, Q. et al. Dry-sliding Tribological Properties of Nano-Eutectic Fe83B17 Alloy. Tribol Lett 34, 185–191 (2009). https://doi.org/10.1007/s11249-009-9422-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-009-9422-x

Keywords

Navigation