Skip to main content
Log in

Inert Gas Filled Head–Disk Interface for Future Extremely High Density Magnetic Recording

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Inert gas filled head–disk interface (HDI) is a possible solution in reducing the magnetic spacing between the magnetic head and the magnetic media for achieving further increased recording density of a magnetic recording system. This article investigated the flying and thermal performances of a thermal actuated slider at inert gas filled HDI by using a couple-field analysis method which consists of a finite element model of the entire slider, an air bearing model based on the generalized lubrication equation and a heat transfer model which incorporates various molecular dynamics models and considers temperature effects. The simulation studies showed that the variation of gap flying height (FH) with the heater power in the inert gas is quite similar to that in air. It is also found that the slider’s thermal actuation efficiency in helium is slightly better than those in argon and air. However, the temperature effects in a fully sealed drive are totally different to those in an open drive. As a result, the inert gas filled HDI normally requires a larger thermal actuation stroke due to the temperature effects in a fully sealed drive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Aruga, K.: Japanese Patent Koukai Sho57-098164 (1982)

  2. Bouchard, G., Talke, F.: Non-repeatable flutter of magnetic recording disks. IEEE Trans. Magn. 22(5), 1019–1021 (1988). doi:10.1109/TMAG.1986.1064437

    Article  ADS  Google Scholar 

  3. Aruga, K., Suwa, M., Shimizu, K., Watanabe, T.: A study on positioning error caused by flow induced vibration using helium-filled hard disk drives. IEEE Trans. Magn. 43(9), 3750–3755 (2007). doi:10.1109/TMAG.2007.902983

    Article  ADS  Google Scholar 

  4. Azarian, M.H., Bauer, C.L., O’Connor, T.M., Jhon, M.S.: Head-disk interaction in gas-lubricated slider bearings. Wear 168, 49–57 (1993). doi:10.1016/0043-1648(93)90198-U

    Article  Google Scholar 

  5. Strom, B., Zhang, S., Lee, S., Khurshudov, A., Tyndall, G.: Effects of humid air on air-bearing flying height. IEEE Trans. Magn. 43(7), 3301–3304 (2007). doi:10.1109/TMAG.2007.897085

    Article  ADS  Google Scholar 

  6. Liu, B., Yu, S.K., Zhou, W.D., Wong, C.H., Hua, W.: Low flying height slider with high thermal actuation efficiency and small flying height modulation caused by disk waviness. IEEE Trans. Magn. 44(1), 145–150 (2008). doi:10.1109/TMAG.2007.911036

    Article  ADS  Google Scholar 

  7. Juang, J.Y., Bogy, D.B.: Air-Bearing effects on actuated thermal pole-tip protrusion for hard disk drives. ASME J. Tribol. 129, 570–578 (2007). doi:10.1115/1.2736456

    Article  Google Scholar 

  8. Juang, J.Y., Chen, D., Bogy, D.B.: Alternate air bearing slider designs for areal density of 1 Tbit/in2. IEEE Trans. Magn. 42, 241–246 (2006). doi:10.1109/TMAG.2005.861739

    Article  ADS  Google Scholar 

  9. Kurita, M., Xu, J., Tokuyama, M., Nakamoto, K., Saegusa, S., Maruyama, Y.: Flying-height reduction of magnetic head-slider due to thermal protrusion. IEEE Trans. Magn. 41, 3007–3009 (2005). doi:10.1109/TMAG.2005.855240

    Article  ADS  Google Scholar 

  10. Song, S., Stoev, K., Fang, D., Gan, W., Rudman, V., Wang, J.: Pole tip protrusion of giant magnetic recording heads: simulation and experimental verification. J. Appl. Phys. 97, 10P303-1 (2005)

    Google Scholar 

  11. Yu, S.K., Liu, B., Hua, W., Zhou, W.D.: Contact-induced off-track vibrations of air bearing-slider-suspension system in hard disk drives. Tribol. Lett. 24, 27–36 (2006). doi:10.1007/s11249-006-9118-4

    Article  Google Scholar 

  12. Zhou, W.D., Liu, B., Yu, S.K., Hua, W., Wong, C.H.: A generalized heat transfer model for thin film bearings at head-disk interface. Appl. Phys. Lett. 92, 043109 (2008). doi:10.1063/1.2838454

    Article  ADS  CAS  Google Scholar 

  13. Zhou, W.D., Liu, B., Yu, S.K., Hua, W.: Conductive heat transfer in rarefied gas flow through micro/nano channels. DSI Technical Report, Singapore (2008)

  14. Fukui, S., Kaneko, R.: Analysis of ultra-thin gas film lubrication based on linearized Boltzmann equation: first report-derivation of a generalized lubrication equation including thermal creep flow. ASME J. Tribol. 110, 335–341 (1988)

    Article  Google Scholar 

  15. Fukui, S., Kaneko, R.: A database for interpolation of Poiseuille flow rates for high Knudsen number lubrication problems. ASME J. Tribol. 112, 78–83 (1990). doi:10.1115/1.2920234

    Article  Google Scholar 

  16. Zhang, S., Bogy, D.B.: A heat transfer model for thermal fluctuations in a thin slider/disk air bearing. Int. J. Heat Mass Transf. 142, 1791–1800 (1999). doi:10.1016/S0017-9310(98)00267-1

    Article  Google Scholar 

  17. Calvert, M., Baker, J.: Thermal conductivity and gaseous microscale transport. J. Thermophys. Heat Transf. 12, 138–145 (1998). doi:10.2514/2.6338

    Article  CAS  Google Scholar 

  18. Sherman, F.S.: A survey of experimental results and methods for the transition regime of rarefied gas dynamics. Rarefied Gas Dyn. 2, 228–260 (1963)

    ADS  MathSciNet  Google Scholar 

  19. White, F.M.: Viscous Fluid Flow. McGraw-Hill, Singapore (1991)

    Google Scholar 

  20. Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press, New York (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. D. Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, W.D., Liu, B., Yu, S.K. et al. Inert Gas Filled Head–Disk Interface for Future Extremely High Density Magnetic Recording. Tribol Lett 33, 179–186 (2009). https://doi.org/10.1007/s11249-008-9405-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-008-9405-3

Keywords

Navigation