Skip to main content
Log in

Synthesis of Fluorinated ZDDP Compounds

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Volatile degradation products of zinc dialkyl dithio phosphate (ZDDP) composed of phosphorus and sulfur compounds reduce the efficiency of catalytic converters resulting in harmful emissions. A unique way of reducing ZDDP level while maintaining good antiwear performance has been achieved by reacting a novel additive FeF3 with ZDDP. The objective of this research is to examine the chemical interactions between ZDDP and FeF3 that yield the new chemical species responsible for the improved wear performance. The approach adopted involves studies of thermal degradation products of ZDDP that are formed in presence and absence of FeF3. These intermediate products are responsible for the formation of protective tribofilms on the surface. Nuclear Magnetic Resonance Spectroscopy (31P and 19F) has been principally used to identify these products. Results have indicated the formation of new fluorinated phosphorus compounds formed as ‘early intermediate’ products in the reaction between ZDDP and FeF3. The chemical differences observed were used to justify the improved tribological behavior of the new fluorinated ZDDP compounds in comparison to ZDDP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Martin, J.M., Grossiord, C., Le Mogne, T., Bec, S., Tonck, A.: The two-layer structure of zndtp tribofilms: Part I: AES, XPS and XANES analyses. Tribol. Int. 34(8), 523–530 (2001)

    Article  CAS  Google Scholar 

  2. Fuller, M.L.S., Kasrai, M., Bancroft, G.M., Fyfe, K., Tan, K.H.: Solution decomposition of zinc dialkyl dithiophosphate and its effect on antiwear and thermal film formation studied by X-ray absorption spectroscopy. Tribol. Int. 31(10), 627–644 (1998)

    Article  CAS  Google Scholar 

  3. Harrison, P.G., Brown, P., McManus, M.: 31P NMR study of the interaction of a commercial succinimides-type lubricating oil dispersant with zinc(II) bis(O,O′)-di-iso-butyldithiophosphate. Wear 156, 345–349 (1992)

    Google Scholar 

  4. Kapur, G.S., Chopra, A., Sarpal, A.S., Ramakumar, S.S.V., Jain, S.K.: Studies on competitive interactions and blending order of engine oil additives by variable temperature 31P NMR and IR spectroscopy. Tribol. Trans. 42(4), 807–812 (1999)

    Article  CAS  Google Scholar 

  5. Spikes, H.A.: Additive-additive interaction and additive-surface interaction in lubrication. Lubr. Sci. 2(1), 3–23 (1989)

    Article  CAS  MathSciNet  Google Scholar 

  6. Patel, K., Aswath, P.B., Elsenbaumer, R.L.: Development of Low Phosphorus Engine Oils, pp. 557–558. American Society of Mechanical Engineers, New York (2005)

  7. Somayaji, A., Mourhatch, R., Aswath, P.B.: Nanoscale properties of tribofilms from ZDDP and fluorinated ZDDP in the presence and absence of antioxidants. J. Nanosci. Nanotechnol. 7, 4378–4390 (2007)

    Google Scholar 

  8. Coy, R.C., Jones, R.B.: Chemistry of the thermal degradation of zinc dialkyldithiophosphate additives. ASLE Trans. 24(1), 91–97 (1981)

    Google Scholar 

  9. Huq, M.Z., Chen, X., Aswath, P.B., Elsenbaumer, R.L.: Thermal degradation behaviour of zinc dialkyl dithiophosphate in presence of catalyst and detergents in neutral oil. Tribol. Lett. 19(2), 127–134 (2005)

    Article  CAS  Google Scholar 

  10. Huq, M.Z., Aswath, P.B., Elsenbaumer, R.L.: TEM studies of anti-wear films/wear particles generated under boundary conditions lubrication. Tribol. Int. 39(1), 111–116 (2007)

    Article  Google Scholar 

  11. Spedding, H., Watkins, R.C.: Antiwear mechanisms of ZDDP’s—1. Tribol. Int. 15(1), 9–12 (1982)

    Article  CAS  Google Scholar 

  12. Kikabhai, T., Harrison, P.G.: Proton and phosphorus 31 NMR study of ZDDP in solution. J. Chem. Soc., Dalton Trans. 807–813 (1987)

  13. Menzer, S., Phillips, J., Slawin, A., Williams, D., Woolins, J.: Structural characterisation of basic O,O′ dialkyl dithiophosphate and two isomeric examples of zinc monothiophosphate. J. Chem. Soc., Dalton Trans. 3269–3273 (2000)

  14. Spikes, H.A.: The history and mechanisms of ZDDP. Tribol. Lett. 17(3), 469–489 (2004)

    Article  CAS  Google Scholar 

  15. Elliot, A.D., Brazier, J.S.: Thermal stability of zinc dithiophosphate. J. Inst. Petrol. 53(518), 63–76 (1967)

    Google Scholar 

  16. Fuller, M., Yin, Z., Kasrai, M., Bancroft, G.M., Yamaguchi, E.S., Ryason, P.R., Willermet, P.A., Tan, K.H.: Chemical characterization of tribochemical and thermal films generated from neutral and basic ZDDPs using X-ray absorption spectroscopy. Tribol. Int. 30(4), 305–315 (1997)

    Article  CAS  Google Scholar 

  17. Willermet, P.A., Dailey, D.P., Carter III, R.O., Schmitz, P.J., Zhu, W.: Mechanism of formation of antiwear films from zinc dialkyldithiophosphates. Tribol. Int. 28(3), 177–187 (1995)

    Article  CAS  Google Scholar 

  18. Nicholls, M.A., Do, T., Norton, P.R., Kasrai, M., Bancroft, G.M.: Review of the lubrication of metallic surfaces by zinc dialkyl-dithiophosphates. Tribol. Int. 38(1), 15–39 (2005)

    Article  CAS  Google Scholar 

  19. Fujita, H., Spikes, H.A.: The formation of zinc dithiophosphate antiwear films. Proc. Inst. Mech. Eng. Part J 218(4), 265–277 (2004)

    Article  CAS  Google Scholar 

  20. Coy, R.C., Jones, R.B.: Chemistry of the thermal degradation of zinc dialkyldithiophosphate additives. ASLE Trans. 24(1), 91–97 (1981)

    Google Scholar 

  21. ASTM: Standard test method for trace quantities of sulfur in light liquid petroleum hydrocarbons by oxidative microcoulometry. Petroleum Products and Lubricants (I): D56–D3230; Chap. D3120–03a (2006)

  22. ASTM: Standard test method for determination of additive elements, wear metals, and contaminants in used lubricating oils and determination of selected elements in base oils by inductively coupled plasma atomic emission spectrometry (ICP-AES). Petroleum Products and Lubricants (II): D3231–D 5302; Chap. D5185–05 (2006)

  23. Mourhatch, R., Aswath, P.B.: Nanoscale properties of tribofilms formed with zinc dialkyl dithiophosphate (ZDDP) under extreme pressure condition. J. Nanosci. Nanotechnol. In Press (2008)

  24. Grayson, E.J., Griffith, M.: 31P nuclear magnetic resonance. In: Grayson, E.J., Griffith, M. (eds.) Topics in Phosphorus Chemistry. Interscience Publishers, New York (1967)

  25. Peng, P., Hong, S., Lu, W.: The degradation of zinc dialkyl dithiophosphate additives in fully formulated engine oil as studied by 31P NMR spectroscopy. Lubr. Eng. 50(3), 230–235 (1994)

    CAS  Google Scholar 

  26. Marshall, G.L.: Characterization of lubricants using 31P Fourier transform nuclear magnetic resonance spectroscopy. Appl. Spectrsc. 38(4), 522–526 (1984)

    Article  ADS  CAS  Google Scholar 

  27. Kovacs, Zs., Wittmann, Zs.: Phosphorus 31 nuclear magnetic resonance chemical shifts of phosphoric acid derivatives. Talanta 32(7), 581–582 (1985). doi:10.1016/0039-9140(85)80150-8

    Article  PubMed  Google Scholar 

  28. Emsley, J.W., Feeny, J., Sutcliffe, L.H.: High Resolution Nuclear Magnetic Resonance Spectroscopy. Pergamon Press, Oxford (1965)

    Google Scholar 

  29. Nixon, J.F., Schmutlzler, R.: Phosphorus-31 nuclear magnetic resonance studies of phosphorus fluorine compounds. Spectrochem. Acta 20, 1835–1842 (1964)

    Google Scholar 

  30. Schmutzler, G.S., Reddy, R.: 31P and 19F nuclear magnetic resonance studies of phosphorus-fluorine compounds. Z. Naturforsch. 25b, 1199–1214 (1970)

    Google Scholar 

  31. Parekh, K., Aswath, P.B., Shaub, H., Elsenbaumer, R.L.: Low-phosphorus lubricant additive. Patent 11/182,023 (2006)

  32. Mourhatch, R., Parekh, K., Aswath, P.B.: A multi technique study of the tribological behavior and the tribofilms generated from fluorinated thiophosphate compounds in comparison to normal ZDDP. In: STLE/ASME International Joint Tribology Conference, October 22–25, 2006, San Antonio, TX. Paper IJTC2006-12137

Download references

Acknowledgments

Support provided by a grant from Platinum Research Organization, LLC, Dallas, TX is gratefully acknowledged. The authors appreciate assistance provided by Dr. Zahedul Huq in conducting the Differential Scanning Calorimetry experiments. Assistance provided by Mr. Ramoun Mourhatch and Ms. Anuradha Somayaji in formatting the figures is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranesh B. Aswath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parekh, K., Chen, X. & Aswath, P.B. Synthesis of Fluorinated ZDDP Compounds. Tribol Lett 34, 141–153 (2009). https://doi.org/10.1007/s11249-008-9373-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-008-9373-7

Keywords

Navigation