Skip to main content
Log in

Micro-to-Nano Indentation and Scratch Hardness in the Ni–Co System: Depth Dependence and Implications for Tribological Behavior

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Although size effects in hardness have been extensively reported and analyzed for the static (indentation) case, much less attention has been given to these effects in non-static (scratch) hardness measurements. In the present work, size effects in the indentation and scratch hardness response of the Ni–Co system are evaluated by performing tests at several penetration depths, from the micro to the nanometer range. It is shown that, for all the range of compositions, the hardness response of these materials is strongly affected by the depth of penetration of the indenter: when the depth decreases, both the indentation and scratch hardness increase several times. This result denotes that, when studying the wear behavior of materials, special care must be taken concerning the scale one is dealing with, since the tribo-mechanical response of the material may change significantly from the micrometric to the nanometric contact scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Colaço, R.: Surface damage mechanisms from nano and microcontacts to wear of materials. In: Meyer, E., Gnecco, E. (eds.) Fundamentals of Friction and Wear on the Nanoscale, pp. 453–480. Springer-Verlag (2007)

  2. ASM handbook, vol. 18, Friction, Lubrication and Wear Technology. ASM International, Metals Parks, OH (1992)

  3. Williams, J.A.: Analytical models of scratch hardness. Tribol. Int. 29, 675–694 (1996). doi:10.1016/0301-679X(96)00014-X

    Article  CAS  Google Scholar 

  4. Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity – theory and experiment. Acta Metall. Mater. 42, 475–487 (1994). doi:10.1016/0956-7151(94)90502-9

    Article  CAS  Google Scholar 

  5. Ma, Q., Clarke, D.R.: Size dependent hardness of silver single-crystals. J. Mater. Res. 10, 853–863 (1995). doi:10.1557/JMR.1995.0853

    Article  CAS  Google Scholar 

  6. McElhaney, K.W., Vlassak, J.J., Nix, W.D.: Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J. Mater. Res. 13, 1300–1306 (1998). doi:10.1557/JMR.1998.0185

    Article  CAS  Google Scholar 

  7. Liu, Y., Ngan, A.H.W.: Depth dependence of hardness in copper single crystals measured by nanoindentation. Scr. Mater. 44, 237–241 (2001). doi:10.1016/S1359-6462(00)00598-4

    Article  CAS  Google Scholar 

  8. Misra, A., Finnie, I.: On the size effect in abrasive and erosive wear. Wear 65, 359–373 (1981). doi:10.1016/0043-1648(81)90062-4

    Article  Google Scholar 

  9. Chaudhuri, D., Xie, D., Lakshmanan, A.N.: The influence of stacking fault energy on the wear resistance of nickel base alloys. Wear 209, 140–152 (1997). doi:10.1016/S0043-1648(97)00010-0

    Article  CAS  Google Scholar 

  10. Carvalho, P.A., Braz, N., Pontinha, M.M., Ferreira, M.G.S., Steen, W.M., Vilar, R., et al.: Automated workstation for variable composition laser cladding – its use for rapid alloy scanning. Surf. Coat. Technol. 72, 62–70 (1995). doi:10.1016/0257-8972(94)02333-L

    Article  CAS  Google Scholar 

  11. Graça, S., Colaço, R., Vilar, R.: Indentation size effect in nickel and cobalt laser clad coatings. Surf. Coat. Technol. 202, 538–548 (2007). doi:10.1016/j.surfcoat.2007.06.031

    Article  CAS  Google Scholar 

  12. Graça, S., Colaço, R., Vilar, R.: Using atomic force microscopy to retrieve nanomechanical surface properties of materials. Mater. Sci. Forum 514–516, 1598–1602 (2006)

    Article  Google Scholar 

  13. Tabor, D.: The Hardness of Metals. Oxford University Press, Oxford (2000)

    Google Scholar 

  14. Antunes, J.M., Cavaleiro, A., Menezes, L.F., Simões, M.I., Fernandes, J.V.: Ultra-microhardness testing procedure with Vickers indenter. Surf. Coat. Technol. 149, 27–35 (2002). doi:10.1016/S0257-8972(01)01413-X

    Article  CAS  Google Scholar 

  15. Metals Handbook, vol. 8, 8th edn. ASM, Metals Park, OH (1973)

  16. Gane, N., Skinner, J.: Friction and scratch deformation of metals on a microscale. Wear 24, 207–217 (1973). doi:10.1016/0043-1648(73)90233-0

    Article  CAS  Google Scholar 

  17. Thompson, A.W.: Order in Ni 25 percent Co. Scr. Metall. 8, 1167–1170 (1974). doi:10.1016/0036-9748(74)90489-X

    Article  CAS  Google Scholar 

  18. Taylor, A.: Latice parameters of binary nickel cobalt alloys. J. Inst. Met. 77, 585–594 (1950)

    CAS  Google Scholar 

  19. Garlipp, W., Cilense, M., Beatrice, C.R.S.: Evidence of short-range order in Ni-Co (25at-percent-Co) alloy by electrical-resistivity. Scr. Metall. Mater. 29, 1035–1037 (1993). doi:10.1016/0956-716X(93)90173-P

    Article  CAS  Google Scholar 

  20. Cable, J.W., Wollan, E.O., Koehler, W.C.: Distribution of magnetic moments in Pd-3D and Ni-3D alloys. Phys. Rev. 138, A755 (1965). doi:10.1103/PhysRev.138.A755

    Article  Google Scholar 

  21. Ma, Z., Long, S., Pan, Y., Zhou, Y.: Indentation depth dependence of the mechanical strength of Ni films. J. Appl. Phys. 103, 043512 (2008). doi:10.1063/1.2885090

    Article  CAS  Google Scholar 

  22. Mathieu, H.J., Datta, M., Landolt, D.: Thickness of natural oxide-films determined by AES and XPS with and without sputtering. J. Vac. Sci. Technol. A 3, 331–335 (1985). doi:10.1116/1.573260

    Article  CAS  Google Scholar 

  23. Thouless, M.D.: An analysis of spalling in the microscratch tests. Eng. Fract. Mech. 61, 75–81 (1998). doi:10.1016/S0013-7944(98)00049-6

    Article  Google Scholar 

  24. Degiampietro, K., Colaco, R.: Nanoabrasive wear induced by an AFM diamond tip on stainless steel. Wear 263, 1579–1584 (2007). doi:10.1016/j.wear.2006.10.020

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Albano Cavaleiro for his help in performing ultramicrohardness experiments and FCT for the financial support of this research (Project Nanonico, POCTI/CTM/59376/2004). S. Graça also acknowledges FCT for the PhD grant SFRH/BD/17758/2004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogério Colaço.

Appendix: Geometrical Characterization of Nanoindentation and Nanoscratch Hardness Tests

Appendix: Geometrical Characterization of Nanoindentation and Nanoscratch Hardness Tests

The Veeco DNISP diamond AFM tip used in this work is an equilateral triangular base pyramid (Fig. A1a) with tip apex angle of ~93° (Fig. A1b). Assuming that the tip is infinitely sharp (Fig. A2), the angle between the back face and the axis of the pyramid (β) is ~47.5°, while the angle between the front edge and the axis of the pyramid (α) is ~45.5°. By using simple trigonometric relations, the following equations can be obtained:

$$ a = h\tan \alpha , $$
(A1)
$$ b = h\tan \beta , $$
(A2)
$$ w = \frac{a + b}{\cos 30}, $$
(A3)
Fig. A1
figure 5

SEM micrographs of Veeco DNISP probe viewed from bottom (a) and side (b). The side view shows that the top part of the diamond mounted on the cantilever is pyramidal, with the axis of the pyramid perpendicular to the cantilever, whereas the bottom part, where most of the glue is located, has irregular geometry

Fig. A2
figure 6

Scheme of Veeco DNISP tip viewed from bottom (top) and side (bottom)

with a, b, w, and h, defined in Fig. A2. Combining Eqs. A1A3, the area function of the tip, A p(h), can be obtained:

$$ A_{\text{p}} = \frac{{w\left( {a + b} \right)}}{2} = \frac{1}{\sqrt 3 }\left( {\tan \alpha + \tan \beta } \right)^{2} h^{2} . $$
(A4)

Replacing the apex semi-angles α and β by the values retrieved from the SEM micrograph of Fig. A1b, an approximated value of the area function of the DNISP tip can be obtained:

$$ A_{\text{p}} \approx 2.568h^{2} . $$
(A5)

A 2-D scheme of the DNISP tip scratching the surface of a material can be seen in Fig. A3. During the scratching process it is assumed that the perimeter of the contact is located at the surface mean line and, consequently, pile-up or sink-in effects do not contribute to the contact area. In this case w corresponds exactly to the width of the groove. Moreover, the contact between indenter and material only occurs at the two frontal faces of the pyramid (dark areas at the bottom part of Fig. A3). By introducing the values of a and b (given by Eqs. A1 and A2, respectively) in Eq. A3, and solving this equation in relation to h, the following relation is obtained:

$$ h = \frac{\sqrt 3 w}{{2\left( {\tan \alpha + \tan \beta } \right)}}. $$
(A6)
Fig. A3
figure 7

Scheme of scratching process using the Veeco DNISP tip. The lateral view of the process and the bottom view of the indenter are shown, respectively, in the top and bottom parts of the figure

From Fig. A3 results:

$$ c = a\sin 30. $$
(A7)

Combining Eqs. A1, A6, and A7, c can be written as function of w:

$$ c = \frac{\sqrt 3 w}{{4\left( {1 + \frac{\tan \beta }{\tan \alpha }} \right)}}. $$
(A8)

The projected area of contact between indenter and material during the scratch test, A s, is then given by:

$$ A_{\text{s}} = 2\left( {\frac{wc}{2}} \right) = \frac{{\sqrt 3 w^{2} }}{{4\left( {1 + \frac{\tan \beta }{\tan \alpha }} \right)}}, $$
(A9)

and, finally, the scratch hardness (H s) can be determined:

$$ H_{\text{s}} = \frac{{F_{\text{N}} }}{{A_{\text{s}} }} = \eta \frac{{F_{\text{N}} }}{{w^{2} }}, $$
(A10)

with

$$ \eta = \frac{4}{\sqrt 3 }\left( {1 + \frac{\tan \beta }{\tan \alpha }} \right). $$
(A11)

Replacing the apex semi-angles α and β by the values retrieved from the SEM micrograph of Fig. A1b leads to η = 4.786 for the DNISP tip.

The depth of the nanoindentations, h i, can be estimated by combining Eqs. 1 and A5:

$$ h_{\text{i}} \approx 0.624\sqrt {\frac{{F_{\text{N}} }}{{H_{\text{i}} }}} , $$
(A12)

where H i is the indentation hardness measured from the AFM images of nanoindentations. The depth of the nanoscratches can be determined by combining Eqs. A6, A10, and A11 and replacing the apex semi-angles α and β by the values retrieved from the SEM micrograph of Fig. A1b:

$$ h_{\text{s}} \approx 0.898\sqrt {\frac{{F_{\text{N}} }}{{H_{\text{s}} }}} , $$
(A13)

where H s is the scratch hardness measured from the AFM images of nanoscratches.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graça, S., Colaço, R. & Vilar, R. Micro-to-Nano Indentation and Scratch Hardness in the Ni–Co System: Depth Dependence and Implications for Tribological Behavior. Tribol Lett 31, 177–185 (2008). https://doi.org/10.1007/s11249-008-9350-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-008-9350-1

Keywords

Navigation