Skip to main content

Advertisement

Log in

CRISPR-associated nucleases: the Dawn of a new age of efficient crop improvement

  • Review
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The world stands at a new threshold today. As a planet, we face various challenges, and the key one is how to continue to produce enough food, feed, fiber, and fuel to support the burgeoning population. In the past, plant breeding and the ability to genetically engineer crops contributed to increasing food production. However, both approaches rely on random mixing or integration of genes, and the process can be unpredictable and time-consuming. Given the challenge of limited availability of natural resources and changing environmental conditions, the need to rapidly and precisely improve crops has become urgent. The discovery of CRISPR-associated endonucleases offers a precise yet versatile platform for rapid crop improvement. This review summarizes a brief history of the discovery of CRISPR-associated nucleases and their application in genome editing of various plant species. Also provided is an overview of several new endonucleases reported recently, which can be utilized for editing of specific genes in plants through various forms of DNA sequence alteration. Genome editing, with its ever-expanding toolset, increased efficiency, and its potential integration with the emerging synthetic biology approaches hold promise for efficient crop improvement to meet the challenge of supporting the needs of future generations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abudayyeh OO, Gootenberg JS, Konermann S et al (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353(6299):aaf5573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Abudayyeh OO, Gootenberg JS, Essletzbichler P et al (2017) RNA targeting with CRISPR–Cas13. Nature 550(7675):280

    Article  PubMed  PubMed Central  Google Scholar 

  • Abu-Zaitoon YM, Al Tawaha AR, Alnaimat SM, Al-Rawashdeh IM et al (2019) Investigation of the potential role of aldehyde oxidase in the indole-3-acetic acid synthesis of developing rice grains. Plant Cell Biotechnol Mol Biol 20:6–13

    Google Scholar 

  • Al Amin N, Ahmad N, Wu N et al (2019) CRISPR-Cas9 mediated targeted the disruption of FAD2–2 microsomal omega-6 desaturase in soybean (Glycine max. L). BMC Biotechnol 19(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  • Aman R, Ali Z, Butt H et al (2018) RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol 19(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Anders C, Niewoehner O, Duerst A, Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513(7519):569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson M, Turesson H, Olsson N et al (2018) Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol Plant 164(4):378–384

    Article  CAS  PubMed  Google Scholar 

  • Barrangou R (2015) Diversity of CRISPR-Cas immune systems and molecular machines. Genome Biol 16(1):247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712

    Article  CAS  PubMed  Google Scholar 

  • Begemann M, Gray BN (2018) Compositions and methods for modifying genomes. U.S. Patent No. 9,896,696. U.S. Patent and Trademark Office, Washington, DC

  • Begemann MB, Gray BN, January E, et al (2017a) Characterization and validation of a novel group of type V, class 2 nucleases for in vivo genome editing. BioRxiv 192799

  • Begemann MB, Gray BN, January E et al (2017b) Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases. Sci Rep 7(1):11606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bertier LD, Ron M, Huo H, Bradford KJ, Britt AB, Michelmore RW (2018) High-resolution analysis of the efficiency, heritability, and editing outcomes of CRISPR/Cas9-induced modifications of NCED4 in lettuce (Lactuca sativa). G3 8(5):1513–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolotin A, Quinquis B, Sorokin A et al (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151(8):2551–2561

    Article  CAS  PubMed  Google Scholar 

  • Brooks C, Nekrasov V, Lippman ZB, Van Eck J (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol 166(3):1292–1297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brouns SJ, Jore MM, Lundgren M et al (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321(5891):960–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bult CJ, White O, Olsen GJ et al (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273(5278):1058–1073

    Article  CAS  PubMed  Google Scholar 

  • Butler NM, Atkins PA, Voytas DF, Douches DS (2015) Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PLoS ONE 10(12):e0144591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai Y, Chen L, Liu X et al (2015) CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS ONE 10(8):e0136064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai Y, Chen L, Liu X et al (2018) CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotechnol J 16(1):176–185

    Article  CAS  PubMed  Google Scholar 

  • Carlson DF, Fahrenkrug SC, Hackett PB (2012) Targeting DNA with fingers and TALENs. Mol Ther Nucleic acids 1

  • Cebrian-Serrano A, Davies B (2017) CRISPR-Cas orthologues and variants: optimizing the repertoire, specificity, and delivery of genome engineering tools. Mamm Genome 28(7–8):247–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Čermák T, Baltes NJ, Čegan R, Zhang Y, Voytas DF (2015) High-frequency, precise modification of the tomato genome. Genome Biol 16(1):232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chandrasekaran J, Brumin M, Wolf D et al (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17(7):1140–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Char SN, Neelakandan AK, Nahampun H et al (2017) An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol J 15(2):257–268

    Article  CAS  PubMed  Google Scholar 

  • Charrier A, Vergne E, Dousset N, Richer A, Petiteau A, Chevreau E (2019) Efficient, targeted mutagenesis in apple and first-time edition of pear using the CRISPR-Cas9 system. Front Plant Sci 10:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Chavez A, Scheiman J, Vora S et al (2015) Highly efficient Cas9-mediated transcriptional programming. Nat Methods 12(4):326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Hu J, Almeida R et al (2016) Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci. Nucleic Acids Res 44(8):e75–e75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook C, Martin L, Bastow R (2014) Opportunities in plant synthetic biology. J Exp Bot 65(8):1921–1926

    Article  CAS  PubMed  Google Scholar 

  • Cox DB, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, Zhang F (2017) RNA editing with CRISPR-Cas13. Science 358(6366):1019–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cradick TJ, Fine EJ, Antico CJ et al (2013) CRISPR/Cas9 systems targeting β-globin and CCR32 genes have substantial off-target activity. Nucleic Acids Res 41(20):9584–9592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtin SJ, Xiong Y, Michno JM et al (2018) CRISPR/cas9 and talen s generate heritable mutations for genes involved in small RNA processing of glycine max and Medicago truncatula. Plant Biotechnol J 16(6):1125–1137

    Article  CAS  PubMed  Google Scholar 

  • Dahan-Meir T, Filler-Hayut S, Melamed-Bessudo C, Bocobza S, Czosnek H, Aharoni A, Levy AA (2018) Efficient in planta gene targeting in tomato using geminiviral replicons and the CRISPR/Cas9 system. Plant J 95(1):5–16

    Article  CAS  PubMed  Google Scholar 

  • Danilo B, Perrot L, Mara K, Botton E, Nogué F, Mazier M (2019) Efficient and transgene-free gene targeting using Agrobacterium-mediated delivery of the CRISPR/Cas9 system in tomato. Plant Cell Rep 38:459–462

    Article  CAS  Google Scholar 

  • de Toledo Thomazella DP, Brail Q, Dahlbeck D, Staskawicz B (2016) CRISPR-Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. BioRxiv 064824

  • Deltcheva E, Chylinski K, Sharma CM et al (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471(7340):602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng L, Wang H, Sun C et al (2018) Efficient generation of pink-fruited tomatoes using the CRISPR/Cas9 system. J Genet Genom 45(1):51

    Article  Google Scholar 

  • DiCarlo JE, Norville JE, Mali P et al (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41(7):4336–4343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding D, Chen K, Chen Y, Li H, Xie K (2018) Engineering introns to express RNA guides for Cas9-and Cpf1-mediated multiplex genome editing. Mol Plant 11(4):542–552

    Article  CAS  PubMed  Google Scholar 

  • Dong D, Ren K, Qiu X et al (2016) The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 532(7600):522

    Article  CAS  PubMed  Google Scholar 

  • Doudna JA, Jinek M, Charpentier E, et al (2014) Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription. U.S. Patent Application No. 13/842,859

  • Endo M, Mikami M, Toki S (2015) Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol 56(1):41–47

    Article  CAS  PubMed  Google Scholar 

  • Endo A, Masafumi M, Kaya H, Toki S (2016) Efficient, targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Sci Rep 6:38169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan D, Liu T, Li C, Jiao B, Li S, Hou Y, Luo K (2015) Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci Rep 5:12217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Z, Zhang B, Ding W et al (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23(10):1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng C, Su H, Bai H et al (2018) High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize. Plant Biotechnol J 16(11):1848–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fister AS, Landherr L, Maximova SN, Guiltinan MJ (2018) Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao. Front Plant Sci 9:268

    Article  PubMed  PubMed Central  Google Scholar 

  • Friedland AE, Baral R, Singhal P et al (2015) Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biol 16(1):257

    Article  CAS  Google Scholar 

  • Fu Y, Foden JA, Khayter C et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31(9):822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Zhu N, Zhu X, Wu M et al (2019) Diversity and redundancy of the ripening regulatory networks revealed by the fruit ENCODE and the new CRISPR/Cas9 CNR and NOR mutants. Horticult Res 6(1):39

    Article  Google Scholar 

  • Garneau JE, Dupuis MÈ, Villion M, Romero DA et al (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468(7320):67

    Article  CAS  PubMed  Google Scholar 

  • Gaudelli NM, Komor AC, Rees HA et al (2017) Programmable base editing of A• T to G• C in genomic DNA without DNA cleavage. Nature 551(7681):464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert LA, Larson MH, Morsut L et al (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154(2):442–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR et al (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818

    Article  CAS  PubMed  Google Scholar 

  • Gomez MA, Lin ZD, Moll T et al (2019) Simultaneous CRISPR/Cas9-mediated editing of cassava eIF 4E isoforms nCBP-1 and nCBP-2 reduce cassava brown streak disease symptom severity and incidence. Plant Biotechnol J 17(2):421–434

    Article  CAS  PubMed  Google Scholar 

  • Groenen PM, Bunschoten AE, Soolingen DV et al (1993) Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method. Mol Microbiol 10(5):1057–1065

    Article  CAS  PubMed  Google Scholar 

  • Harrington LB, Burstein D, Chen JS et al (2018) Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 362(6416):839–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havlicek S, Shen Y, Alpagu Y et al (2017) Re-engineered RNA-guided FokI-nucleases for improved genome editing in human cells. Mol Ther 25(2):342–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayut SF, Bessudo CM, Levy AA (2017) Targeted recombination between homologous chromosomes for precise breeding in tomato. Nat Commun 8:15605

    Article  CAS  Google Scholar 

  • Holkenbrink C, Dam MI, Kildegaard KR, Beder J, Dahlin J, Doménech Belda D, Borodina I (2018) EasyCloneYALI: CRISPR/Cas9-based synthetic toolbox for engineering of the yeast Yarrowia lipolytica. Biotechnol J 13(9):1700543

    Article  CAS  Google Scholar 

  • Holme IB, Wendt T, Gil-Humanes J, Deleuran LC, Starker CG, Voytas DF, Brinch-Pedersen H (2017) Evaluation of the mature grain phytase candidate HvPAPhy_a gene in barley (Hordeum vulgare L.) using CRISPR/Cas9 and TALENs. Plant Mol Biol 95(1–2):111–121

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Wang C, Fu Y et al (2016) Expanding the range of CRISPR/Cas9 genome editing in rice. Mol Plant 9(6):943–945

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Wang C, Liu Q, Fu Y, Wang K (2017) Targeted mutagenesis in rice using CRISPR-Cpf1 system. J Genet Genom 44(1):71–73

    Article  Google Scholar 

  • Hua K, Tao X, Zhu JK (2019) Expanding the base editing scope in rice by using Cas9 variants. Plant Biotechnol J 17(2):499–504

    Article  PubMed  Google Scholar 

  • Hwang SG, Lee CY, Tseng CS (2018) Heterologous expression of rice 9-cis-epoxycarotenoid dioxygenase 4 (OsNCED4) in Arabidopsis confers sugar oversensitivity and drought tolerance. Bot Stud 59(1):2. https://doi.org/10.1186/s40529-018-0219-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishino Y, Shinagawa H, Makino K et al (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169(12):5429–5433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito Y, Nishizawa-Yokoi A, Endo M, Mikami M, Toki S (2015) CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem Biophys Res Commun 467(1):76–82

    Article  CAS  PubMed  Google Scholar 

  • Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15(1):16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia H, Wang N (2014) Targeted genome editing of sweet orange using Cas9/sgRNA. PloS One 9(4):e93806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia H, Xu J, Orbović V, Zhang Y, Wang N (2017a) Editing citrus genome via SaCas9/sgRNA system. Front Plant Sci 8:2135

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia H, Zhang Y, Orbović V, Xu J, White FF, Jones JB, Wang N (2017b) Genome editing of the disease susceptibility gene Cs LOB 1 in citrus confers resistance to citrus canker. Plant Biotechnol J 15(7):817–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia M, Geornaras I, Belk KE, Yang H (2019) Sequence-specific removal of shiga toxin-producing escherichia coli using the crispr-Cas9 system. Meat Muscle Biol 1(3):120–120

    Google Scholar 

  • Jiang F, Doudna JA (2017) CRISPR–Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Bikard D, Cox D et al (2013a) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31(3):233–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013b) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum, and rice. Nucleic Acids Res 41(20):e188–e188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang F, Zhou K, Ma L et al (2015) A Cas9–guide RNA complex preorganized for target DNA recognition. Science 348(6242):1477–1481

    Article  CAS  PubMed  Google Scholar 

  • Jiang F, Taylor DW, Chen JS et al (2016) Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351(6275):867–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinek M, Jiang F, Taylor DW et al (2014) Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343(6176):1247997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Josephs EA, Kocak DD, Fitzgibbon CJ et al (2015) Structure and specificity of the RNA-guided endonuclease Cas9 during DNA interrogation, target binding, and cleavage. Nucleic Acids Res 43(18):8924–8941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawarabayasi Y, Sawada M, Horikawa H et al (1998) Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res 5(2):55–76

    Article  CAS  PubMed  Google Scholar 

  • Kawarabayasi Y, Hino Y, Horikawa H et al (1999) Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res 6(2):83–101

    Article  CAS  PubMed  Google Scholar 

  • Kaya H, Mikami M, Endo A, Endo M, Toki S (2016) Highly specific targeted mutagenesis in plants using Staphylococcus aureus Cas9. Sci Rep 6:26871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaya H, Ishibashi K, Toki S (2017) A split Staphylococcus aureus Cas9 as a compact genome-editing tool in plants. Plant Cell Physiol 58(4):643–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MZ, Haider S, Mansoor S, Amin I (2019) Targeting plant ssDNA viruses with engineered miniature CRISPR-Cas14a. Trends Biotechnol 37(8):800–804

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Kim ST, Ryu J, Kang BC, Kim JS, Kim SG (2017) CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat Commun 8:14406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klap C, Yeshayahou E, Bolger AM et al (2017) Tomato facultative parthenocarpy results from Sl AGAMOUS-LIKE 6 loss of function. Plant Biotechnol J 15(5):634–647

    Article  CAS  PubMed  Google Scholar 

  • Kleinstiver BP, Prew MS, Tsai SQ et al (2015a) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523(7561):481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kleinstiver BP, Prew MS, Tsai SQ, Nguyen NT, Topkar VV, Zheng Z, Joung JK (2015b) Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol 33(12):1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinstiver BP, Tsai SQ, Prew MS, Nguyen NT et al (2016) Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol 34(8):869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klenk HP, Clayton RA, Tomb JF et al (1998) Corrections: the complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 394(6688):101

    Article  CAS  PubMed Central  Google Scholar 

  • Knott GJ, East-Seletsky A, Cofsky JC, Holton JM, Charles E, O’Connell MR, Doudna JA (2017) Guide-bound structures of an RNA-targeting A-cleaving CRISPR–Cas13a enzyme. Nat struct mol biol 24(10):825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603):420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konermann S, Brigham MD, Trevino AE et al (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517(7536):583

    Article  CAS  PubMed  Google Scholar 

  • Koonin EV, Makarova KS, Zhang F (2017) Diversity, classification, and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37:67–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koonin E, Zhang F, Wolf Y, et al (2019) Novel CRISPR enzymes and systems. European patent application no. EP16738253.0A

  • Lander ES (2016) The heroes of CRISPR. Cell 164(1–2):18–28

    Article  CAS  PubMed  Google Scholar 

  • Lawrenson T, Shorinola O, Stacey N et al (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16(1):258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee K, Eggenberger AL, Banakar R et al (2019a) CRISPR/Cas9-mediated targeted T-DNA integration in rice. Plant Mol Biol 99(4–5):317–328

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Zhang Y, Kleinstiver BP et al (2019b) Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnol J 17(2):362–372

    Article  CAS  PubMed  Google Scholar 

  • Lemmon ZH, Reem NT, Dalrymple J et al (2018) Rapid improvement of domestication traits in an orphan crop by genome editing. Nat Plants 4(10):766

    Article  CAS  PubMed  Google Scholar 

  • Li D, Qiu Z, Shao Y et al (2013a) Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol 31(8):681–683

    Article  CAS  PubMed  Google Scholar 

  • Li JF, Norville JE, Aach J et al (2013b) Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31(8):688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Li X, Zhou Z et al (2016) Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front Plant Sci 7:377

    PubMed  PubMed Central  Google Scholar 

  • Li C, Zong Y, Wang Y et al (2018a) Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol 19(1):59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li R, Fu D, Zhu B, Luo Y, Zhu H (2018b) CRISPR/Cas9-mediated mutagenesis of lncRNA1459 alters tomato fruit ripening. Plant J 94(3):513–524

    Article  CAS  PubMed  Google Scholar 

  • Li R, Li R, Li X et al (2018c) Multiplexed CRISPR/Cas9-mediated metabolic engineering of γ-aminobutyric acid levels in Solanum lycopersicum. Plant Biotechnol J 16(2):415–427

    Article  CAS  PubMed  Google Scholar 

  • Li R, Zhang L, Wang L, Chen L, Zhao R, Sheng J, Shen L (2018d) Reduction of tomato-plant chilling tolerance by CRISPR–Cas9-mediated SlCBF1 mutagenesis. J Agric Food Chem 66(34):9042–9051

    Article  CAS  PubMed  Google Scholar 

  • Li S, Li J, Zhang J et al (2018e) Synthesis-dependent repair of Cpf1-induced double-strand DNA breaks enables targeted gene replacement in rice. J Exp Bot 69(20):4715–4721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Zhang X, Wang W et al (2018f) Expanding the scope of CRISPR/Cpf1-mediated genome editing in rice. Mol Plant 11(7):995–998

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wang Y, Chen S et al (2018g) Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Front Plant Sci 9:559

    Article  PubMed  PubMed Central  Google Scholar 

  • Li R, Liu C, Zhao R et al (2019) CRISPR/Cas9-Mediated SlNPR1 mutagenesis reduces tomato plant drought tolerance. BMC Plant Biol 19(1):38

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang Z, Zhang K, Chen K, Gao C (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genom 41(2):63–68

    Article  CAS  Google Scholar 

  • Liang Z, Chen K, Li T et al (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Chen P, Wang M, Li X, Wang J, Yin M, Wang Y (2017) C2c1-sgRNA complex structure reveals RNA-guided DNA cleavage mechanism. Mol cell 65(2):310–322

    Article  CAS  PubMed  Google Scholar 

  • Liu JJ, Orlova N, Oakes BL et al (2019) CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 566(7743):218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowder LG, Paul JW, Qi Y (2017) Multiplexed transcriptional activation or repression in plants using CRISPR-dCas9-based systems. In: Kaufmann K, Mueller-Roeber B (eds) Plant gene regulatory networks. Humana Press, New York, pp 167–184

    Chapter  Google Scholar 

  • Lowder LG, Zhou J, Zhang Y et al (2018) Robust transcriptional activation in plants using multiplexed CRISPR-Act2. 0 and mTALE-Act systems. Mol Plant 11(2):245–256

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Zhu JK (2017) Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol Plant 10(3):523–525

    Article  CAS  PubMed  Google Scholar 

  • Ma D, Peng S, Huang W, Cai Z, Xie Z (2018) Rational design of Mini-Cas9 for transcriptional activation. ACS Synth Biol 7(4):978–985

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Zhu C, Zheng M et al (2019) CRISPR/Cas9-mediated multiple gene editing in Brassica oleracea var. capitata using the endogenous tRNA-processing system. Horticult Res 6(1):20

    Article  CAS  Google Scholar 

  • Macovei A, Sevilla NR, Cantos C et al (2018) Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnol J 16(11):1918–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarova KS, Grishin NV, Shabalina SA et al (2006) A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1(1):7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Makarova KS, Wolf YI, Alkhnbashi OS et al (2015) An updated evolutionary classification of CRISPR–Cas systems. Nat Rev Microbiol 13(11):722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mali P, Aach J, Stranges PB, Esvelt KM et al (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31(9):833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malnoy M, Viola R, Jung MH et al (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1904

    Article  PubMed  PubMed Central  Google Scholar 

  • Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu JK (2013) Application of the CRISPR–Cas system for efficient genome engineering in plants. Mol Plant 6(6):2008–2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martín-Pizarro C, Triviño JC, Posé D (2018) Functional analysis of the TM6 MADS-box gene in the octoploid strawberry by CRISPR/Cas9-directed mutagenesis. J Exp Bot 70(3):885–895

    Article  PubMed Central  CAS  Google Scholar 

  • Marzec M, Hensel G (2018) Targeted base editing systems are available for plants. Trends Plant Sci 23(11):955–957

    Article  CAS  PubMed  Google Scholar 

  • Masepohl B, Görlitz K, Böhme H (1996) Long tandemly repeated repetitive (LTRR) sequences in the filamentous cyanobacterium Anabaena sp. PCC 7120. Biochim Biophys Acta BBA Gene Struct Expr 1307(1):26–30

    Article  Google Scholar 

  • Miao J, Guo D, Zhang J et al (2013) Targeted mutagenesis in rice using a CRISPR-Cas system. Cell Res 23(10):1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michno JM, Wang X, Liu J, Curtin SJ, Kono TJ, Stupar RM (2015) CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops Food 6(4):243–252

    Article  PubMed  PubMed Central  Google Scholar 

  • Mikami M, Toki S, Endo M (2016) Precision targeted mutagenesis via Cas9 paired nickases in rice. Plant Cell Physiol 57(5):1058–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JC, Tan S, Qiao (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29(2):143

    Article  CAS  PubMed  Google Scholar 

  • Minkenberg B, Xie K, Yang Y (2017) Discovery of rice essential genes by characterizing a CRISPR-edited mutation of closely related rice MAP kinase genes. Plant J 89(3):636–648

    Article  CAS  PubMed  Google Scholar 

  • Mojica FJM, Ferrer C, Juez G, Rodriguez-Valera F (1995) Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol Microbiol 17(1):85–93

    Article  CAS  PubMed  Google Scholar 

  • Mojica FJ, Díez-Villaseñor C, García-Martínez J et al (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defense system. Microbiology 155(3):733–740

    Article  CAS  PubMed  Google Scholar 

  • Murovec J, Pirc Ž, Yang B (2017) New variants of CRISPR RNA-guided genome editing enzymes. Plant Biotechnol J 15(8):917–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naim F, Dugdale B, Kleidon J, Brinin A, Shand K, Waterhouse P, Dale J (2018) Gene editing the phytoene desaturase alleles of Cavendish banana using CRISPR/Cas9. Transgenic Res 27(5):451–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima I, Ban Y, Azuma A, Onoue N et al (2017) CRISPR/Cas9-mediated targeted mutagenesis in grape. PLoS ONE 12(5):e0177966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakayasu M, Akiyama R, Lee HJ et al (2018) Generation of α-solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene. Plant Physiol Biochem 131:70–77

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (2000) The need for GM technology in agriculture. The National Academies Press, Washington, DC. https://doi.org/10.17226/9889

    Book  Google Scholar 

  • Nekrasov V, Staskawicz B, Weigel D et al (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31(8):691

    Article  CAS  PubMed  Google Scholar 

  • Nekrasov V, Wang C, Win J, Lanz C, Weigel D, Kamoun S (2017) Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci Rep 7(1):482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nelson KE, Clayton RA, Gill SR et al (1999) Evidence for lateral gene transfer between Archaea and bacteria from the genome sequence of Thermotoga maritima. Nature 399(6734):323

    Article  CAS  PubMed  Google Scholar 

  • Nieves-Cordones M, Mohamed S, Tanoi K et al (2017) Production of low-Cs + rice plants by inactivation of the K + transporter Os HAK 1 with the CRISPR-Cas system. Plant J 92(1):43–56

    Article  CAS  PubMed  Google Scholar 

  • Nishimasu H, Ran FA, Hsu PD et al (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156(5):935–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimasu H, Cong L, Yan WX et al (2015) Crystal structure of Staphylococcus aureus Cas9. Cell 162(5):1113–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noman A, Aqeel M, He S (2016) CRISPR-Cas9: a tool for qualitative and quantitative plant genome editing. Front Plant Sci 7:1740

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Connell M (2019) Molecular mechanisms of RNA-targeting by Cas13-containing type VI CRISPR-Cas systems. J Mol Biol 431(1):66–87

    Article  PubMed  CAS  Google Scholar 

  • Odipio J, Alicai T, Ingelbrecht I, Nusinow DA, Bart R, Taylor NJ (2017) Efficient CRISPR/Cas9 genome editing of phytoene desaturase in cassava. Front Plant Sci 8:1780

    Article  PubMed  PubMed Central  Google Scholar 

  • Ortigosa A, Gimenez-Ibanez S, Leonhardt N, Solano R (2019) Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of Sl JAZ 2. Plant Biotechnol J 17(3):665–673

    Article  CAS  PubMed  Google Scholar 

  • Pan C, Ye L, Qin L et al (2016) CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci Rep 6:24765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JJ, Dempewolf E, Zhang W et al (2017) RNA-guided transcriptional activation via CRISPR/dCas9 mimics overexpression phenotypes in Arabidopsis. PLoS ONE 12(6):e0179410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng A, Chen S, Lei T et al (2017) Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene Cs LOB 1 promoter in citrus. Plant Biotechnol J 15(12):1509–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez L, Soto E, Farré G et al (2019) CRISPR/Cas9 mutations in the rice Waxy/GBSSI gene induce allele-specific and zygosity-dependent feedback effects on endosperm starch biosynthesis. Plant Cell Rep 38(3):417–433

    Article  PubMed  CAS  Google Scholar 

  • Perez-Pinera P, Kocak DD, Vockley CM et al (2013) RNA-guided gene activation by CRISPR-Cas9–based transcription factors. Nat Methods 10(10):973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA and provide additional tools for evolutionary studies. Microbiology 151(3):653–663

    Article  CAS  PubMed  Google Scholar 

  • Qi LS, Larson MH, Gilbert LA et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin R, Li J, Li H et al (2019) Developing a highly efficient and wildly adaptive CRISPR-SaCas9 toolset for plant genome editing. Plant Biotechnol J 17(4):706

    Article  PubMed  PubMed Central  Google Scholar 

  • Raitskin O, Schudoma C, West A, Patron NJ (2019) Comparison of efficiency and specificity of CRISPR-associated (Cas) nucleases in plants: an expanded toolkit for precision genome engineering. PLoS ONE 14(2):e0211598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ran FA, Cong L, Yan WX et al (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520(7546):186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ron M, Kajala K, Pauluzzi G et al (2014) Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol 166(2):455–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadanandom A, Srivastava AK, Zhang C (2019) Targeted mutagenesis of the SUMO protease, overly tolerant to salt1 in rice through CRISPR/Cas9-mediated genome editing reveals a major role of this SUMO protease in salt tolerance. BioRxiv 555706

  • Safari F, Zare K, Negahdaripour M, Barekati-Mowahed M, Ghasemi Y (2019) CRISPR Cpf1 proteins: structure, function and implications for genome editing. Cell Biosci 9(1):36

    Article  PubMed  PubMed Central  Google Scholar 

  • Sánchez-León S, Gil-Humanes J, Ozuna CV, Giménez MJ, Sousa C, Voytas DF, Barro F (2018) Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J 16(4):902–910

    Article  PubMed  CAS  Google Scholar 

  • Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating, and targeting genomes. Nat Biotechnol 32(4):347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiml S, Fauser F, Puchta H (2014) The CRISPR/C as the system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J 80(6):1139–1150

    Article  CAS  PubMed  Google Scholar 

  • Selma S, Bernabe-Orts J, Vazquez-Vilar M et al (2018) Strong gene activation with genome-wide specificity using a new orthogonal CRISPR/Cas9-based programmable transcriptional activator. BioRxiv 486068

  • Sensen CW, Charlebois RL, Chow C et al (1998) Completing the sequence of the Sulfolobus solfataricus P2 genome. Extremophiles 2(3):305–312

    Article  CAS  PubMed  Google Scholar 

  • Severinov K, Zhang F, Wolf Y et al (2017) Novel CRISPR enzymes and systems. U.S. patent application no. US15/482,603

  • Shan Q, Wang Y, Li J et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31(8):686

    Article  CAS  PubMed  Google Scholar 

  • Shen C, Que Z, Xia Y, Tang N, Li D, He R, Cao M (2017a) Knock out of the annexin gene OsAnn3 via CRISPR/Cas9-mediated genome editing decreased cold tolerance in rice. J Plant Biol 60(6):539–547

    Article  CAS  Google Scholar 

  • Shen L, Hua Y, Fu Y et al (2017b) Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. Sci China Life Sci 60(5):506–515

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Gao H, Wang H et al (2017) ARGOS 8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15(2):207–216

    Article  CAS  PubMed  Google Scholar 

  • Shiu SH, Bleecker AB (2001) Plant receptor-like kinase gene family: diversity, function, and signaling. Sci STKE 2001(113):re22–re22

    Google Scholar 

  • Shmakov S, Abudayyeh OO, Makarova KS et al (2015) Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 60(3):385–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shmakov S, Smargon A, Scott D et al (2017) Diversity and evolution of class 2 CRISPR–Cas systems. Nat Rev Microbiol 15:169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smargon AA, Cox DB, Pyzocha NK et al (2017) Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol Cell 65(4):618–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smilovic M, Gleeson T, Adamowski J et al (2019) More food with less water—Optimizing agricultural water use. Adv Water Resour 123:256–261

    Article  Google Scholar 

  • Songmei L, Jie J, Yang L et al (2019) Characterization and evaluation of OsLCT1 and OsNramp5 mutants generated through CRISPR/Cas9-mediated mutagenesis for breeding low Cd rice. Rice Sci 26(2):88–97

    Article  Google Scholar 

  • Soyk S, Müller NA, Park SJ et al (2017) Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nat Genet 49(1):162

    Article  CAS  PubMed  Google Scholar 

  • Srivastava V, Underwood JL, Zhao S (2017) Dual-targeting by CRISPR/Cas9 for precise excision of transgenes from rice genome. Plant Cell Tissue Organ Cult (PCTOC) 129(1):153–160

    Article  CAS  Google Scholar 

  • Steinert J, Schiml S, Fauser F, Puchta H (2015) Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. Plant J 84(6):1295–1305

    Article  CAS  PubMed  Google Scholar 

  • Sternberg SH, Redding S, Jinek M et al (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507(7490):62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strecker J, Jones S, Koopal B et al (2019) Engineering of CRISPR-Cas12b for human genome editing. Nat Commun 10(1):212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun X, Hu Z, Chen R, Jiang Q, Song G, Zhang H, Xi Y (2015) Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep 5:10342

    Article  PubMed  PubMed Central  Google Scholar 

  • Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169(2):931–945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Svitashev S, Schwartz C, Lenderts B et al (2016) Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat Commun 7:13274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swarts DC, Jinek M (2018) Cas9 versus Cas12a/Cpf1: structure-function comparisons and implications for genome editing. Wiley Interdiscip Rev RNA 9(5):e1481

    Article  CAS  PubMed  Google Scholar 

  • Tak YE, Kleinstiver BP, Nuñez JK et al (2017) Inducible and multiplex gene regulation using CRISPR–Cpf1-based transcription factors. Nat Methods 14(12):1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanenbaum ME, Gilbert LA, Qi LS et al (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159(3):635–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang L, Mao B, Li Y et al (2017a) Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci Rep 7(1):14438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang X, Lowder LG, Zhang T et al (2017b) A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3(3):17018

    Article  CAS  PubMed  Google Scholar 

  • Teng F, Cui T, Feng G et al (2018) Repurposing CRISPR-Cas12b for mammalian genome engineering. Cell Discov 4(1):63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tian S, Jiang L, Gao Q et al (2017) Efficient CRISPR/Cas9-based gene knockout in watermelon. Plant Cell Rep 36(3):399–406

    Article  CAS  PubMed  Google Scholar 

  • Tian S, Jiang L, Cui X et al (2018) Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing. Plant Cell Rep 37(9):1353–1356

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson L, Yang Y, Emenecker R et al (2019) Using CRISPR/Cas9 genome editing in tomato to create a gibberellin-responsive dominant dwarf DELLA allele. Plant Biotechnol J 17(1):132–140

    Article  CAS  PubMed  Google Scholar 

  • Tripathi JN, Ntui VO, Ron M, Muiruri SK, Britt A, Tripathi L (2019) CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Commun Biol 2(1):46

    Article  PubMed  PubMed Central  Google Scholar 

  • Ueta R, Abe C, Watanabe T et al (2017) Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Sci Rep 7(1):507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Upadhyay SK, Kumar J, Alok A, Tuli R (2013) RNA-guided genome editing for target gene mutations in wheat. G3 3(12):2233–2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Vu T, Sivankalyani V, Kim EJ, et al (2019) Highly efficient homology-directed repair using transient CRISPR/Cpf1-geminiviral replicon in tomato. BioRxiv 521419

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32(9):947

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Wang C, Liu P et al (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE 11(4):e0154027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L, Chen L, Li R, Zhao R, Yang M, Sheng J, Shen L (2017a) Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. J Agric Food Chem 65(39):8674–8682

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Geng L, Yuan M et al (2017b) Deletion of a target gene in Indica rice via CRISPR/Cas9. Plant Cell Rep 36(8):1333–1343

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Mao Y, Lu Y, Wang Z, Tao X, Zhu JK (2018a) Multiplex gene editing in rice with simplified CRISPR-Cpf1 and CRISPR-Cas9 systems. J Integr Plant Biol 60(8):626–631

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Pan Q, He F, Akhunova A, Chao S, Trick H, Akhunov E (2018b) Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. CRISPR J 1(1):65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Tu M, Wang D et al (2018c) CRISPR/Cas9-mediated efficient, targeted mutagenesis in grape in the first generation. Plant Biotechnol J 16(4):844–855

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wang S, Li D et al (2018d) Optimized paired-sgRNA/Cas9 cloning and expression cassette triggers high-efficiency multiplex genome editing in kiwifruit. Plant Biotechnol J 16(8):1424–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, Samsulrizal NH, Yan C et al (2019a) Characterization of CRISPR mutants targeting genes modulating pectin degradation in ripening tomato. Plant Physiol 179(2):544–557

    CAS  PubMed  Google Scholar 

  • Wang R, da Rocha Tavano EC, Lammers M, Martinelli AP, Angenent GC, de Maagd RA (2019b) Re-evaluation of transcription factor function in tomato fruit development and ripening with CRISPR/Cas9-mutagenesis. Sci Rep 9(1):1696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X, Han Y, Feng X et al (2019c) Breeding of Indica glutinous cytoplasmic male sterile line WX209A via CRISPR/Cas9 mediated genomic editing. Czech J Genet Plant Breed 55:93–100

    Article  CAS  Google Scholar 

  • Wei L, Qi Z, Teng F (2019) Genome editing system and method based on C2c1 nuclease. CN patent no. 109337904

  • Wolter F, Klemm J, Puchta H (2018) Efficient in planta gene targeting in Arabidopsis using egg cell-specific expression of the Cas9 nuclease of Staphylococcus aureus. Plant J 94(4):735–746

    Article  CAS  PubMed  Google Scholar 

  • Woo JW, Kim J, Kwon SI et al (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33(11):1162

    Article  CAS  PubMed  Google Scholar 

  • Wood AJ, Lo TW, Zeitler B et al (2011) Targeted genome editing across species using ZFNs and TALENs. Science 333(6040):307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu D, Guan X, Zhu Y, Ren K, Huang Z (2017) Structural basis of stringent PAM recognition by CRISPR-C2c1 in complex with sgRNA. Cell Res 27(5):705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115(1):35–46

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Ma D (2018) Engineering of a minimal SaCas9 CRISPR/Cas system for gene editing and transcriptional regulation optimized by enhanced guide RNA. U.S. Patent Application No. 15/619,518

  • Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR–Cas system. Mol Plant 6(6):1975–1983

    Article  CAS  PubMed  Google Scholar 

  • Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci 112(11):3570–3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing HL, Dong L, Wang ZP et al (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14(1):327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu C, Liberatore KL, MacAlister CA, Huang Z et al (2015a) A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nat Genet 47(7):784

    Article  CAS  PubMed  Google Scholar 

  • Xu RF, Li H, Qin RY et al (2015b) Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci Rep 5:11491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C, Park SJ, Van Eck J, Lippman ZB (2016) Control of inflorescence architecture in tomato by BTB/POZ transcriptional regulators. Genes Dev 30(18):2048–2061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu R, Qin R, Li H, Li D, Li L, Wei P, Yang J (2017) Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnol J 15(6):713–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu ZS, Feng K, Xiong AS (2019) CRISPR/Cas9-mediated multiply targeted mutagenesis in orange and purple carrot plants. Mol Biotechnol 61(3):191–199

    Article  CAS  PubMed  Google Scholar 

  • Yamano T, Nishimasu H, Zetsche B et al (2016) Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165(4):949–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamano T, Nishimasu H, Zetsche B et al (2017) Crystal structure of CRISPR Cpf1. European patent no. 3405570A1. European Patent Office, Munich

  • Yang H, Gao P, Rajashankar KR, Patel DJ (2016) PAM-dependent target DNA recognition and cleavage by C2c1 CRISPR-Cas endonuclease. Cell 167(7):1814–1828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin X, Biswal AK, Dionora J, Perdigon KM et al (2017) CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant Cell Rep 36(5):745–757

    Article  CAS  PubMed  Google Scholar 

  • Yu QH, Wang B, Li N et al (2017) CRISPR/Cas9-induced targeted mutagenesis and gene replacement to generate long-shelf-life tomato lines. Sci Rep 7(1):11874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zetsche B, Gootenberg JS, Abudayyeh OO et al (2015a) Cpf1 is a single RNA-guided endonuclease of class 2 CRISPR-Cas system. Cell 163(3):759–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zetsche B, Volz SE, Zhang F (2015b) A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol 33(2):139

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhang J, Wei P et al (2014) The CRISPR/C as9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12(6):797–807

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Cong L, Fei RAN et al (2016a) U.S. patent application no. 14/970,967

  • Zhang Y, Liang Z, Zong Y et al (2016b) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, LeBlanc C, Irish VF, Jacob Y (2017) Rapid and efficient CRISPR/Cas9 gene editing in citrus using the YAO promoter. Plant Cell Rep 36(12):1883–1887

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang H, Botella JR, Zhu JK (2018a) Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. J Integr Plant Biol 60(5):369–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Wang W, Shan L et al (2018b) Gene activation in human cells using CRISPR/Cpf1-p300 and CRISPR/Cpf1-SunTag systems. Protein Cell 9(4):380–383

    CAS  PubMed  Google Scholar 

  • Zhang F, Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker I (2019a) Novel CRISPR enzymes and systems. U.S. Patent Application No. 15/844,608

  • Zhang Y, Zhang Y, Qi Y (2019b) Plant gene knockout and knockdown by CRISPR-Cpf1 (Cas12a) systems. In: Qi Y (ed) Plant genome editing with CRISPR systems, vol 1917. Humana Press, New York, pp 245–256

    Chapter  Google Scholar 

  • Zhou J, Deng K, Cheng Y et al (2017a) CRISPR-Cas9 based genome editing reveals new insights into microRNA function and regulation in rice. Front Plant Sci 8:1598

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Zha M, Huang J, Li L, Imran M, Zhang C (2017b) StMYB44 negatively regulates phosphate transport by suppressing the expression of PHOSPHATE1 in potato. J Exp Bot 68(5):1265–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Z, Kang X, Lor VS, Weiss D, Olszewski N (2019) Characterization of a semi-dominant dwarfing PROCERA allele identified in a screen for CRISPR/Cas9-induced suppressors of loss-of-function alleles. Plant Biotechnol J 17(2):319

    Article  PubMed  Google Scholar 

  • Zong Y, Wang Y, Li C et al (2017) Precise base editing in rice, wheat, and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35(5):438

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Dhingra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghogare, R., Williamson-Benavides, B., Ramírez-Torres, F. et al. CRISPR-associated nucleases: the Dawn of a new age of efficient crop improvement. Transgenic Res 29, 1–35 (2020). https://doi.org/10.1007/s11248-019-00181-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-019-00181-y

Keywords

Navigation