Skip to main content

Advertisement

Log in

A virus-derived short hairpin RNA confers resistance against sugarcane mosaic virus in transgenic sugarcane

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

RNA interference (RNAi) is commonly used to produce virus tolerant transgenic plants. The objective of the current study was to generate transgenic sugarcane plants expressing a short hairpin RNAs (shRNA) targeting the coat protein (CP) gene of sugarcane mosaic virus (SCMV). Based on multiple sequence alignment, including genomic sequences of four SCMV strains, a conserved region of ~ 456 bp coat protein (CP) gene was selected as target gene and amplified through polymerase chain reaction (PCR). Subsequently, siRNAs2 and siRNA4 were engineered as stable short hairpin (shRNA) transgenes of 110 bp with stem and loop sequences derived from microRNA (sof-MIR168a; an active regulatory miRNA in sugarcane). These transgenes were cloned in independent RNAi constructs under the control of the polyubiquitin promoter. The RNAi constructs were delivered into two sugarcane cultivars ‘SPF-234 and NSG-311 in independent experiments using particle bombardment. Molecular identification through PCR and Southern blot revealed anti-SCMV positive transgenic lines. Upon mechanical inoculation of transgenic and non-transgenic sugarcane lines with SCMV, the degree of resistance was found variable among the two sugarcane cultivars. For sugarcane cultivar NSG-311, the mRNA expression of the CP–SCMV was reduced to 10% in shRNA2-transgenic lines and 80% in shRNA4-transgenic lines. In sugarcane cultivar SPF-234, the mRNA expression of the CP–SCMV was reduced to 20% in shRNA2-transgenic lines and 90% in shRNA4 transgenic lines, revealing that transgenic plants expressing shRNA4 were almost immune to SCMV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anwar S (2005) Impact of sugarcane disease on cane and sugar yield. In: Proceedings of the 3rd agricultural biotechnology workshop

  • Atreya PL, Atreya CD, Pirone TP (1991) Amino acid substitutions in the coat protein result in loss of insect transmissibility of a plant virus. Proc Natl Acad Sci 88(17):7887–7891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basnayake SW, Moyle R, Birch RG (2011) Embryogenic callus proliferation and regeneration conditions for genetic transformation of diverse sugarcane cultivars. Plant Cell Rep 30(3):439–448

    Article  CAS  PubMed  Google Scholar 

  • Bukovinszky T, Gols R, Hemerik L, Van Lenteren JC, Vet LE (2007) Time allocation of a parasitoid foraging in heterogeneous vegetation: implications for host–parasitoid interactions. J Anim Ecol 76(5):845–853

    Article  PubMed  Google Scholar 

  • Bull T, Glasziou K (1963) The evolutionary significance of sugar accumulation in Saccharum. Aust J Biol Sci 16(4):737–742

    Article  CAS  Google Scholar 

  • Chung BY, Miller WA, Atkins JF, Firth AE (2008) An overlapping essential gene in the Potyviridae. Proc Natl Acad Sci USA 105(15):5897–5902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolja V, Haldeman R, Robertson N, Dougherty W, Carrington J (1994) Distinct functions of capsid protein in assembly and movement of tobacco etch potyvirus in plants. EMBO J 13(6):1482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duan C-G, Wang C-H, Guo H-S (2012) Application of RNA silencing to plant disease resistance. Silence 3(1):5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836):494–498

    Article  CAS  PubMed  Google Scholar 

  • Frizzi A, Huang S (2010) Tapping RNA silencing pathways for plant biotechnology. Plant Biotechnol J 8(6):655–677

    Article  CAS  PubMed  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 19:806–811

    Article  Google Scholar 

  • Gargouri-Bouzid R, Jaoua L, Mansour RB, Yemna H, Malika A, Radhouane E (2005) PVY resistant transgenic potato plants (cv Claustar) expressing the viral coat protein. J Plant Biotechnol 7(3):1–6

    Google Scholar 

  • Guo J, Gao S, Lin Q, Wang H, Que Y, Xu L (2015) Transgenic sugarcane resistant to Sorghum mosaic virus based on coat protein gene silencing by RNA interference. BioMed Res Int. https://doi.org/10.1155/2015/861907

  • Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404(6775):293–296

    Article  CAS  PubMed  Google Scholar 

  • Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, Araki R, Sakurai N, Suzuki H, Aoki K (2007) Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci 104(15):6478–6483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joung YH, Kamo K (2006) Expression of a polyubiquitin promoter isolated from Gladiolus. Plant Cell Rep 25(10):1081–1088

    Article  CAS  PubMed  Google Scholar 

  • Kalantidis K, Psaradakis S, Tabler M, Tsagris M (2002) The occurrence of CMV-specific short RNAs in transgenic tobacco expressing virus-derived double-stranded RNA is indicative of resistance to the virus. Mol Plant Microbe Interact 15(8):826–833

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Liu R, Zhou T, Fan Z (2013) Genetic diversity and population structure of sugarcane mosaic virus. Virus Res 171(1):242–246

    Article  CAS  PubMed  Google Scholar 

  • Lu PY, Xie F, Woodle MC (2005) In vivo application of RNA interference: from functional genomics to therapeutics. Adv Genet 54:115–142

    Article  Google Scholar 

  • Nasir IA, Tabassum B, Qamar Z, Javed MA, Tariq M, Farooq AM, Butt SJ, Qayyum A, Husnain T (2014) Herbicide-tolerant sugarcane (Saccharum officinarum L.) plants: an unconventional method of weed removal. Turk J Biol 38(4):439–449

    Article  CAS  Google Scholar 

  • Peláez P, Sanchez F (2013) Small RNAs in plant defense responses during viral and bacterial interactions: similarities and differences. Front Plant Sci 4:343

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-Quintero ÁL, Neme R, Zapata A, López C (2010) Plant microRNAs and their role in defense against viruses: a bioinformatics approach. BMC Plant Biol 10(1):138

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao AQ, Irfan M, Saleem Z, Nasir IA, Riazuddin S, Husnain T (2011) Overexpression of the phytochrome B gene from Arabidopsis thaliana increases plant growth and yield of cotton (Gossypium hirsutum). J Zhejiang Univ Sci B 12(4):326–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Revers F, Le Gall O, Candresse T, Maule AJ (1999) New advances in understanding the molecular biology of plant/potyvirus interactions. Mol Plant Microbe Interact 12(5):367–376

    Article  CAS  Google Scholar 

  • Sharp PA (2001) RNA interference—2001. Genes Dev 15(5):485–490

    Article  CAS  PubMed  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98(3):503IN3509–508IN5517

    Article  Google Scholar 

  • Tabassum B, Nasir IA, Husnain T (2011) Potato virus Y mRNA expression knockdown mediated by siRNAs in cultured mammalian cell line. Virol Sin 26(2):105–113

    Article  CAS  PubMed  Google Scholar 

  • Tabassum B, Nasir IA, Khan A, Aslam U, Tariq M, Shahid N, Husnain T (2016) Short hairpin RNA engineering: in planta gene silencing of potato virus Y. Crop Prot 86:1–8

    Article  CAS  Google Scholar 

  • Urcuqui-Inchima S, Haenni A-L, Bernardi F (2001) Potyvirus proteins: a wealth of functions. Virus Res 74(1):157–175

    Article  CAS  PubMed  Google Scholar 

  • Vijayapalani P, Maeshima M, Nagasaki-Takekuchi N, Miller WA (2012) Interaction of the trans-frame potyvirus protein P3N-PIPO with host protein PCaP1 facilitates potyvirus movement. PLoS Pathog 8(4):e1002639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voinnet O (2002) RNA silencing: small RNAs as ubiquitous regulators of gene expression. Curr Opin Plant Biol 5(5):444–451

    Article  CAS  PubMed  Google Scholar 

  • Wei T, Zhang C, Hong J, Xiong R, Kasschau KD, Zhou X, Carrington JC, Wang A (2010) Formation of complexes at plasmodesmata for potyvirus intercellular movement is mediated by the viral protein P3N-PIPO. PLoS Pathog 6(6):e1000962

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolfe M, Baresel J, Desclaux D, Goldringer I, Hoad S, Kovacs G, Löschenberger F, Miedaner T, Østergård H, Van Bueren EL (2008) Developments in breeding cereals for organic agriculture. Euphytica 163(3):323

    Article  Google Scholar 

  • Xu H, Yao Y, Zhao Y, Smith LP, Baigent SJ, Nair V (2008) Analysis of the expression profiles of Marek’s disease virus-encoded microRNAs by real-time quantitative PCR. J Virol Methods 149(2):201–208

    Article  CAS  PubMed  Google Scholar 

  • Yao W, Ruan M, Qin L, Yang C, Chen R, Chen B, Zhang M (2017) Field performance of transgenic sugarcane lines resistant to sugarcane mosaic virus. Front Plant Sci 8:104

    PubMed  PubMed Central  Google Scholar 

  • Yu H, Kumar P (2003) Post-transcriptional gene silencing in plants by RNA. Plant Cell Rep 22(3):167–174

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bushra Tabassum.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, U., Tabassum, B., Nasir, I.A. et al. A virus-derived short hairpin RNA confers resistance against sugarcane mosaic virus in transgenic sugarcane. Transgenic Res 27, 203–210 (2018). https://doi.org/10.1007/s11248-018-0066-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-018-0066-1

Keywords

Navigation