Skip to main content

Advertisement

Log in

Generation of AQP2-Cre transgenic mini-pigs specifically expressing Cre recombinase in kidney collecting duct cells

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The important differences in physiological parameters and anatomical characteristics of the kidney between humans and mice make it difficult to replicate the precise progression of human renal cystic diseases in gene modification mouse models. In contrast to mice, pigs are a better animal model of human diseases, as they are more similar in terms of organ size, structure, and physiological parameters. Here, we report the generation and initial examination of an AQP2-Cre transgenic (Tg) Chinese miniature (mini)-pig line that expresses Cre recombinase exclusively in kidney collecting duct cells. An 8-kb fragment of the mini-pig aquaporin 2 (AQP2) 5′-flanking region was utilized to direct Cre expression in Tg mini-pigs. Two Tg mini-pigs were generated by pig somatic cell nuclear transfer and both carried the entire coding sequence of Cre recombinase. RT-PCR and western blotting analysis revealed that Cre recombinase was uniquely expressed in the kidney, while immunohistochemical studies located its expression in kidney collecting duct cells. Furthermore, six integration sites and 12–14 copies of the Cre gene were detected in various tissues by high-efficiency thermal asymmetric interlaced PCR and absolute quantitative real-time PCR, respectively. Combined with previous studies of Cre recombinase activity, we believe that this AQP2-Cre Tg mini-pig line will be a useful tool to generate kidney collecting duct cell-specific gene knockout mini-pig models, thereby allowing the investigation of gene functions in kidney development and the mechanisms of human renal cystic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahn D, Ge Y, Stricklett PK, Gill P, Taylor D, Hughes AK, Yanagisawa M, Miller L, Nelson RD, Kohan DE (2004) Collecting duct-specific knockout of endothelin-1 causes hypertension and sodium retention. J Clin Investig 114(4):504–511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bouchard M, Souabni A, Busslinger M (2004) Tissue-specific expression of cre recombinase from the Pax8 locus. Genesis 38(3):105–109

    Article  CAS  PubMed  Google Scholar 

  • Breton S, Alper SL, Gluck SL, Sly WS, Barker JE, Brown D (1995) Depletion of intercalated cells from collecting ducts of carbonic anhydrase II-deficient (CAR2 null) mice. Am J Physiol Renal Physiol 269(6):F761–F774

    CAS  Google Scholar 

  • Chang M-Y, Ong AC (2007) Autosomal dominant polycystic kidney disease: recent advances in pathogenesis and treatment. Nephron Physiol 108(1):p1–p7

    Article  PubMed  Google Scholar 

  • Chen L, Li L, Pang D, Li Z, Wang T, Zhang M, Song N, Yan S, Lai L, Ouyang H (2010) Construction of transgenic swine with induced expression of Cre recombinase. Animal 4(05):767–771

    Article  CAS  PubMed  Google Scholar 

  • Dobie KW, Lee M, Fantes JA, Graham E, Clark AJ, Springbett A, Lathe R, McClenaghan M (1996) Variegated transgene expression in mouse mammary gland is determined by the transgene integration locus. Proc Natl Acad Sci 93(13):6659–6664

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fedeles SV, Tian X, Gallagher A-R, Mitobe M, Nishio S, Lee SH, Cai Y, Geng L, Crews CM, Somlo S (2011) A genetic interaction network of five genes for human polycystic kidney and liver diseases defines polycystin-1 as the central determinant of cyst formation. Nat Genet 43(7):639–647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Festenstein R, Tolaini M, Corbella P, Mamalaki C, Parrington J, Fox M, Miliou A, Jones M, Kioussis D (1996) Locus control region function and heterochromatin-induced position effect variegation. Science 271(5252):1123–1125

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Teucher M, Anastassiadis K, Skarnes W, Stewart AF (2010) Chapter eight-A recombineering pipeline to make conditional targeting constructs. Methods Enzymol 477:125–144

    Article  CAS  PubMed  Google Scholar 

  • Fushimi K, Uchida S, Hara Y, Hirata Y, Marumo F, Sasaki S (1993) Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature 361(6412):549–552

    Article  CAS  PubMed  Google Scholar 

  • Grantham JJ (2008) Autosomal dominant polycystic kidney disease. N Engl J Med 359(14):1477–1485

    Article  CAS  PubMed  Google Scholar 

  • Guan Y, Hao C, Cha DR, Rao R, Lu W, Kohan DE, Magnuson MA, Redha R, Zhang Y, Breyer MD (2005) Thiazolidinediones expand body fluid volume through PPARγ stimulation of ENaC-mediated renal salt absorption. Nat Med 11(8):861–866

    Article  CAS  PubMed  Google Scholar 

  • Harris PC, Torres VE (2009) Polycystic kidney disease. Annu Rev Med 60:321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He R-H, Sheng J-Z, Luo Q, Jin F, Wang B, Qian Y-L, Zhou C-Y, Sheng X, Huang H-F (2006) Aquaporin-2 expression in human endometrium correlates with serum ovarian steroid hormones. Life Sci 79(5):423–429

    Article  CAS  PubMed  Google Scholar 

  • Ingham DJ, Beer S, Money S, Hansen G (2001) Quantitative real-time PCR assay for determining transgene copy number in transformed plants. Biotechniques 31(1):132–141

    CAS  PubMed  Google Scholar 

  • Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52–67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koetsier PA, Mangel L, Schmitz B, Doerfler W (1996) Stability of transgene methylation patterns in mice: position effects, strain specificity and cellular mosaicism. Transgenic Res 5(4):235–244

    Article  CAS  PubMed  Google Scholar 

  • Kong Q, Wu M, Huan Y, Zhang L, Liu H, Bou G, Luo Y, Mu Y, Liu Z (2009) Transgene expression is associated with copy number and cytomegalovirus promoter methylation in transgenic pigs. PLoS One 4(8):e6679

    Article  PubMed Central  PubMed  Google Scholar 

  • Lai L, Prather RS (2003a) Creating genetically modified pigs by using nuclear transfer. Reprod Biol Endocrinol 1(1):82

    Article  PubMed Central  PubMed  Google Scholar 

  • Lai L, Prather RS (2003b) Production of cloned pigs by using somatic cells as donors. Cloning Stem Cells 5(4):233–241

    Article  CAS  PubMed  Google Scholar 

  • Le Y, Sauer B (2000) Conditional gene knockout using cre recombinase. In: Tuan RS, Lo CW (eds) Developmental biology protocols, vol II. Humana Press Inc., Totowa, pp 477–485

  • Lerman LO, Schwartz RS, Grande JP, Sheedy PF, Romero JC (1999) Noninvasive evaluation of a novel swine model of renal artery stenosis. J Am Soc Nephrol 10(7):1455–1465

    CAS  PubMed  Google Scholar 

  • Leuchs S, Saalfrank A, Merkl C, Flisikowska T, Edlinger M, Durkovic M, Rezaei N, Kurome M, Zakhartchenko V, Kessler B (2012) Inactivation and inducible oncogenic mutation of p53 in gene targeted pigs. PLoS One 7(10):e43323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li L, Pang D, Wang T, Li Z, Chen L, Zhang M, Song N, Nie D, Chen Z, Lai L (2009) Production of a reporter transgenic pig for monitoring Cre recombinase activity. Biochem Biophys Res Commun 382(2):232–235

    Article  CAS  PubMed  Google Scholar 

  • Lunney JK (2007) Advances in swine biomedical model genomics. Int J Biol Sci 3(3):179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Melo EO, Canavessi AM, Franco MM, Rumpf R (2007) Animal transgenesis: state of the art and applications. J Appl Genet 48(1):47–61

    Article  PubMed  Google Scholar 

  • Mott JD, Werb Z (2004) Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol 16(5):558–564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26(2):99–109

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi T, Kuroiwa A, Yamada S, Isotani A, Yamashita A, Tairaka A, Hayashi T, Takagi T, Ikawa M, Matsuda Y (2002) FISH analysis of 142 EGFP transgene integration sites into the mouse genome. Genomics 80(6):564–574

    Article  CAS  PubMed  Google Scholar 

  • Nelson RD, Stricklett P, Gustafson C, Stevens A, Ausiello D, Brown D, Kohan DE (1998) Expression of an AQP2 Cre recombinase transgene in kidney and male reproductive system of transgenic mice. Am J Physiol Cell Physiol 275(1):C216–C226

    CAS  Google Scholar 

  • Nielsen S, DiGiovanni SR, Christensen EI, Knepper MA, Harris HW (1993) Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proc Natl Acad Sci 90(24):11663–11667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ong AC, Harris PC (2005) Molecular pathogenesis of ADPKD: the polycystin complex gets complex. Kidney Int 67(4):1234–1247

    Article  CAS  PubMed  Google Scholar 

  • Pillai MM, Venkataraman GM, Kosak S, Torok-Storb B (2008) Integration site analysis in transgenic mice by thermal asymmetric interlaced (TAIL)-PCR: segregating multiple-integrant founder lines and determining zygosity. Transgenic Res 17(4):749–754

    Article  CAS  PubMed  Google Scholar 

  • Prather RS, Shen M, Dai Y (2008) Genetically modified pigs for medicine and agriculture. Biotechnol Genet Eng Rev 25(1):245–266

    CAS  PubMed  Google Scholar 

  • Pruijt JF, Fibbe WE, Laterveer L, Pieters RA, Lindley IJ, Paemen L, Masure S, Willemze R, Opdenakker G (1999) Prevention of interleukin-8-induced mobilization of hematopoietic progenitor cells in rhesus monkeys by inhibitory antibodies against the metalloproteinase gelatinase B (MMP-9). Proc Natl Acad Sci 96(19):10863–10868

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rahman MA, Hwang G-L, Razak SA, Sohm F, Maclean N (2000) Copy number related transgene expression and mosaic somatic expression in hemizygous and homozygous transgenic tilapia (Oreochromis niloticus). Transgenic Res 9(6):417–427

    Article  CAS  PubMed  Google Scholar 

  • Ronzaud C, Loffing J, Bleich M, Gretz N, Gröne H-J, Schütz G, Berger S (2007) Impairment of sodium balance in mice deficient in renal principal cell mineralocorticoid receptor. J Am Soc Nephrol 18(6):1679–1687

    Article  CAS  PubMed  Google Scholar 

  • Rubera I, Hummler E, Beermann F (2009) Transgenic mice and their impact on kidney research. Pflügers Arch 458(1):211–222

    Article  CAS  PubMed  Google Scholar 

  • Serova IA, Dvoryanchikov GA, Andreeva LE, Burkov IA, Dias LP, Battulin NR, Smirnov AV, Serov OL (2012) A 3,387 bp 5′-flanking sequence of the goat alpha-S1-casein gene provides correct tissue-specific expression of human granulocyte colony-stimulating factor (hG-CSF) in the mammary gland of transgenic mice. Transgenic Res 21(3):485–498

    Article  CAS  PubMed  Google Scholar 

  • Skowronski MT, Kwon T-H, Nielsen S (2009) Immunolocalization of aquaporin 1, 5, and 9 in the female pig reproductive system. J Histochem Cytochem 57(1):61–67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Srinivas S, Watanabe T, Lin C-S, William CM, Tanabe Y, Jessell TM, Costantini F (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1(1):4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walters E, Wolf E, Whyte J, Mao J, Renner S, Nagashima H, Kobayashi E, Zhao J, Wells K, Critser J (2012) Completion of the swine genome will simplify the production of swine as a large animal biomedical model. BMC Med Genomics 5(1):55

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whitworth KM, Prather RS (2010) Somatic cell nuclear transfer efficiency: how can it be improved through nuclear remodeling and reprogramming? Mol Reprod Dev 77(12):1001–1015

    Article  CAS  PubMed  Google Scholar 

  • Whyte JJ, Prather RS (2011) Genetic modifications of pigs for medicine and agriculture. Mol Reprod Dev 78(10–11):879–891

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang B (2000) The human aquaporin gene family. Curr Genomics 1(1):91–102

    Article  CAS  Google Scholar 

  • Ye J, He J, Li Q, Feng Y, Bai X, Chen X, Zhao Y, Hu X, Yu Z, Li N (2013) Generation of c-Myc transgenic pigs for autosomal dominant polycystic kidney disease. Transgenic Res 22(6):1231–1239

    Google Scholar 

  • Zhang H, Zhang A, Kohan DE, Nelson RD, Gonzalez FJ, Yang T (2005) Collecting duct-specific deletion of peroxisome proliferator-activated receptor γ blocks thiazolidinedione-induced fluid retention. Proc Natl Acad Sci USA 102(26):9406–9411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou Z, Ma H, Qu L, Xie F, Ma Q, Ren Z (2012) Establishment of an improved high-efficiency thermal asymmetric interlaced PCR for identification of genomic integration sites mediated by phiC31 integrase. World J Microbiol Biotechnol 28(3):1295–1299

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 31201750/C040601). The authors would like to thank Qingkai Guo, Jian Wang, Xue Chen, Peiran Hu and Yong Fang for technical assistance. We thank the members of the Animal Biotechnology laboratory, College of Animal Science, Jilin University, for their helpful discussions during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Li.

Additional information

Weiwei Luo and Zhanjun Li have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 158 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, W., Li, Z., Huang, Y. et al. Generation of AQP2-Cre transgenic mini-pigs specifically expressing Cre recombinase in kidney collecting duct cells. Transgenic Res 23, 365–375 (2014). https://doi.org/10.1007/s11248-013-9774-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-013-9774-8

Keywords

Navigation