Skip to main content

Advertisement

Log in

Discoidin domain receptor 2 (DDR2) regulates body size and fat metabolism in mice

  • Brief Communication
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Discoidin domain receptor 2 (DDR2) is a receptor tyrosine kinase that is activated by fibrillar collagens, which act as its endogenous ligand. DDR2 regulates cell proliferation, cell adhesion, migration, extracellular matrix remodeling and reproductive functions. Both DDR2 null allele mice and mice with a recessive, loss-of-function allele for Ddr2 exhibit dwarfing and a reduction in body weight. However, the detailed mechanisms by which DDR2 exerts its positive systemic regulation of whole body size, local skeletal size and fat tissue volume remain to be clarified. To investigate the systemic role of DDR2 in body size regulation, we produced transgenic mice in which the DDR2 protein is overexpressed, then screened the transgenic mice for abnormalities using systematic mouse abnormality screening. The modified-SHIPRA screen revealed that only the parameter of body size was significantly different among the genotypes. We also discovered that the body length was significantly increased, while the body weight was significantly decreased in transgenic mice compared to their littermate controls. We also found that the epididymal fat pads were significantly decreased in transgenic mice compared to normal littermate mice, which may have been the cause of the leptin decrement in the transgenic mice. The new insight that DDR2 might promote metabolism in adipocyte cells is very interesting, but more experiments will be needed to elucidate the direct relation between DDR2 and adipose-derived hormones. Taken together, our data demonstrated that DDR2 might play a systemic role in the regulation of body size thorough skeletal formation and fat metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Agarwal G, Kovac L, Radziejewski C, Samuelsson SJ (2002) Binding of discoidin domain receptor 2 to collagen I: an atomic force microscopy investigation. Biochemistry 41(37):11091–11098. doi:10.1021/bi020087w

    Article  CAS  PubMed  Google Scholar 

  • Ali BR, Xu H, Akawi NA, John A, Karuvantevida NS, Langer R, Al-Gazali L, Leitinger B (2010) Trafficking defects and loss of ligand binding are the underlying causes of all reported DDR2 missense mutations found in SMED-SL patients. Hum Mol Genet 19(11):2239–2250. doi:10.1093/hmg/ddq103

    Article  CAS  PubMed  Google Scholar 

  • Alves F, Vogel W, Mossie K, Millauer B, Hofler H, Ullrich A (1995) Distinct structural characteristics of discoidin I subfamily receptor tyrosine kinases and complementary expression in human cancer. Oncogene 10(3):609–618

    CAS  PubMed  Google Scholar 

  • Bargal R, Cormier-Daire V, Ben-Neriah Z, Le Merrer M, Sosna J, Melki J, Zangen DH, Smithson SF, Borochowitz Z, Belostotsky R, Raas-Rothschild A (2009) Mutations in DDR2 gene cause SMED with short limbs and abnormal calcifications. Am J Hum Genet 84(1):80–84. doi:10.1016/j.ajhg.2008.12.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bartke A, Brown-Borg H (2004) Life extension in the dwarf mouse. Curr Top Dev Biol 63:189–225. doi:10.1016/S0070-2153(04)63006-7

    CAS  PubMed  Google Scholar 

  • Bartke A, Brown-Borg HM, Bode AM, Carlson J, Hunter WS, Bronson RT (1998) Does growth hormone prevent or accelerate aging? Exp Gerontol 33(7–8):675–687

    Article  CAS  PubMed  Google Scholar 

  • Beamer WJ, Eicher EM, Maltais LJ, Southard JL (1981) Inherited primary hypothyroidism in mice. Science 212(4490):61–63

    Article  CAS  PubMed  Google Scholar 

  • Beamer WG, Maltais LJ, DeBaets MH, Eicher EM (1987) Inherited congenital goiter in mice. Endocrinology 120(2):838–840

    Article  CAS  PubMed  Google Scholar 

  • Brown-Borg HM, Borg KE, Meliska CJ, Bartke A (1996) Dwarf mice and the ageing process. Nature 384(6604):33

    Article  CAS  PubMed  Google Scholar 

  • Coleman DL, Hummel KP (1969) Effects of parabiosis of normal with genetically diabetic mice. Am J Physiol 217(5):1298–1304

    CAS  PubMed  Google Scholar 

  • Ferri N, Carragher NO, Raines EW (2004) Role of discoidin domain receptors 1 and 2 in human smooth muscle cell-mediated collagen remodeling: potential implications in atherosclerosis and lymphangioleiomyomatosis. Am J Pathol 164(5):1575–1585. doi:10.1016/S0002-9440(10)63716-9

    Article  CAS  PubMed  Google Scholar 

  • Flamant F, Poguet AL, Plateroti M, Chassande O, Gauthier K, Streichenberger N, Mansouri A, Samarut J (2002) Congenital hypothyroid Pax8(−/−) mutant mice can be rescued by inactivating the TRalpha gene. Mol Endocrinol 16(1):24–32

    CAS  PubMed  Google Scholar 

  • Flurkey K, Papaconstantinou J, Miller RA, Harrison DE (2001) Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc Natl Acad Sci USA 98(12):6736–6741

    Article  CAS  PubMed  Google Scholar 

  • Flurkey K, Papaconstantinou J, Harrison DE (2002) The Snell dwarf mutation Pit1(dw) can increase life span in mice. Mech Ageing Dev 123(2–3):121–130

    Article  CAS  PubMed  Google Scholar 

  • Friedman JM, Leibel RL, Bahary N (1991) Molecular mapping of obesity genes. Mamm Genome 1(3):130–144

    Article  CAS  PubMed  Google Scholar 

  • Hummel KP, Dickie MM, Coleman DL (1966) Diabetes, a new mutation in the mouse. Science 153(3740):1127–1128

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa O, Osawa M, Nishida N, Goshima N, Nomura N, Shimada I (2007) Structural basis of the collagen-binding mode of discoidin domain receptor 2. EMBO J 26(18):4168–4176. doi:10.1038/sj.emboj.7601833

    Article  CAS  PubMed  Google Scholar 

  • Kano K, Marin de Evsikova C, Young J, Wnek C, Maddatu TP, Nishina PM, Naggert JK (2008) A novel dwarfism with gonadal dysfunction due to loss-of-function allele of the collagen receptor gene, Ddr2, in the mouse. Mol Endocrinol 22(8):1866–1880

    Article  CAS  PubMed  Google Scholar 

  • Kano K, Kitamura A, Matsuwaki T, Morimatsu M, Naito K (2009) Discoidin domain receptor 2 (DDR2) is required for maintenance of spermatogenesis in male mice. Mol Reprod Dev 77(1):29–37. doi:10.1002/mrd.21093

    Article  Google Scholar 

  • Kawai I, Hisaki T, Sugiura K, Naito K, Kano K (2012) Discoidin domain receptor 2 (DDR2) regulates proliferation of endochondral cells in mice. Biochem Biophys Res Commun 427(3):611–617. doi:10.1016/j.bbrc.2012.09.106

    Article  CAS  PubMed  Google Scholar 

  • Labrador JP, Azcoitia V, Tuckermann J, Lin C, Olaso E, Manes S, Bruckner K, Goergen JL, Lemke G, Yancopoulos G, Angel P, Martinez C, Klein R (2001) The collagen receptor DDR2 regulates proliferation and its elimination leads to dwarfism. EMBO Rep 2(5):446–452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leitinger B, Hohenester E (2007) Mammalian collagen receptors. Matrix Biol 26(3):146–155

    Article  CAS  PubMed  Google Scholar 

  • Leitinger B, Kwan AP (2006) The discoidin domain receptor DDR2 is a receptor for type X collagen. Matrix Biol 25(6):355–364. doi:10.1016/j.matbio.2006.05.006

    Article  CAS  PubMed  Google Scholar 

  • Leitinger B, Steplewski A, Fertala A (2004) The D2 period of collagen II contains a specific binding site for the human discoidin domain receptor, DDR2. J Mol Biol 344(4):993–1003. doi:10.1016/j.jmb.2004.09.089

    Article  CAS  PubMed  Google Scholar 

  • Li S, Crenshaw EB 3rd, Rawson EJ, Simmons DM, Swanson LW, Rosenfeld MG (1990) Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature 347(6293):528–533

    Article  CAS  PubMed  Google Scholar 

  • Lin KL, Chou CH, Hsieh SC, Hwa SY, Lee MT, Wang FF (2010) Transcriptional upregulation of DDR2 by ATF4 facilitates osteoblastic differentiation through p38 MAPK-mediated Runx2 activation. J Bone Miner Res 25(11):2489–2503. doi:10.1002/jbmr.159

    Article  CAS  PubMed  Google Scholar 

  • Mohan RR, Wilson SE (2001) Discoidin domain receptor (DDR) 1 and 2: collagen-activated tyrosine kinase receptors in the cornea. Exp Eye Res 72(1):87–92. doi:10.1006/exer.2000.0932

    Article  CAS  PubMed  Google Scholar 

  • Nagy A, Gertsenstein M, Vintersten K, Behringer R (2003) Manipulating the mouse embryo. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108(2):193–199

    Article  CAS  PubMed  Google Scholar 

  • Olaso E, Ikeda K, Eng FJ, Xu L, Wang LH, Lin HC, Friedman SL (2001) DDR2 receptor promotes MMP-2-mediated proliferation and invasion by hepatic stellate cells. J Clin Invest 108(9):1369–1378

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olaso E, Labrador JP, Wang L, Ikeda K, Eng FJ, Klein R, Lovett DH, Lin HC, Friedman SL (2002) Discoidin domain receptor 2 regulates fibroblast proliferation and migration through the extracellular matrix in association with transcriptional activation of matrix metalloproteinase-2. J Biol Chem 277(5):3606–3613. doi:10.1074/jbc.M107571200

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava A, Radziejewski C, Campbell E, Kovac L, McGlynn M, Ryan TE, Davis S, Goldfarb MP, Glass DJ, Lemke G, Yancopoulos GD (1997) An orphan receptor tyrosine kinase family whose members serve as nonintegrin collagen receptors. Mol Cell 1(1):25–34

    Article  CAS  PubMed  Google Scholar 

  • Sornson MW, Wu W, Dasen JS, Flynn SE, Norman DJ, O’Connell SM, Gukovsky I, Carriere C, Ryan AK, Miller AP, Zuo L, Gleiberman AS, Andersen B, Beamer WG, Rosenfeld MG (1996) Pituitary lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature 384(6607):327–333

    Article  CAS  PubMed  Google Scholar 

  • Takabayashi S, Umeki K, Yamamoto E, Suzuki T, Okayama A, Katoh H (2006) A novel hypothyroid dwarfism due to the missense mutation Arg479Cys of the thyroid peroxidase gene in the mouse. Mol Endocrinol 20(10):2584–2590

    Article  CAS  PubMed  Google Scholar 

  • Takada J, Fonseca-Alaniz MH, de Campos TB, Andreotti S, Campana AB, Okamoto M, Borges-Silva C, Machado UF, Lima FB (2008) Metabolic recovery of adipose tissue is associated with improvement in insulin resistance in a model of experimental diabetes. J Endocrinol 198(1):51–60. doi:10.1677/JOE-08-0072

    Article  CAS  PubMed  Google Scholar 

  • Vogel W (1999) Discoidin domain receptors: structural relations and functional implications. Faseb J 13(Suppl):S77–S82

    CAS  PubMed  Google Scholar 

  • Vogel W, Gish GD, Alves F, Pawson T (1997) The discoidin domain receptor tyrosine kinases are activated by collagen. Mol Cell 1(1):13–23. doi:10.1016/S1097-2765(00)80003-9

    Google Scholar 

  • Vogel WF, Abdulhussein R, Ford CE (2006) Sensing extracellular matrix: an update on discoidin domain receptor function. Cell Signal 18(8):1108–1116. doi:10.1016/j.cellsig.2006.02.012

    Article  CAS  PubMed  Google Scholar 

  • Wakana S, Suzuki T, Furuse T, Kobayashi K, Miura I, Kaneda H, Yamada I, Motegi H, Toki H, Inoue M, Minowa O, Noda T, Waki K, Tanaka N, Masuya H, Obata Y (2009) Introduction to the Japan Mouse Clinic at the RIKEN BioResource Center. Exp Anim 58(5):443–450

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Peng H, Wu D, Hu K, Goldring MB, Olsen BR, Li Y (2005) Activation of the discoidin domain receptor 2 induces expression of matrix metalloproteinase 13 associated with osteoarthritis in mice. J Biol Chem 280(1):548–555. doi:10.1074/jbc.M411036200

    CAS  PubMed  Google Scholar 

  • Yoshida T, Yamanaka K, Atsumi S, Tsumura H, Sasaki R, Tomita K, Ishikawa E, Ozawa H, Watanabe K, Totsuka T (1994) A novel hypothyroid ‘growth-retarded’ mouse derived from Snell’s dwarf mouse. J Endocrinol 142(3):435–446

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372(6505):425–432. doi:10.1038/372425a0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan; by the Morinaga Foundation; and by the Foundation for Growth Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoshi Kano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawai, I., Matsumura, H., Fujii, W. et al. Discoidin domain receptor 2 (DDR2) regulates body size and fat metabolism in mice. Transgenic Res 23, 165–175 (2014). https://doi.org/10.1007/s11248-013-9751-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-013-9751-2

Keywords

Navigation