Skip to main content

Advertisement

Log in

Production of different glycosylation variants of the tumour-targeting mAb H10 in Nicotiana benthamiana: influence on expression yield and antibody degradation

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

We previously described the expression of a tumour-targeting antibody (mAb H10) in Nicotiana benthamiana by vacuum-agro-infiltration and the remarkable yields of highly pure protein achieved. The objective of the present work was to investigate different strategies for transient overexpression of the mAb H10 in which glycan configuration was modulated and assess how these strategies affect the accumulation yield and stability of the antibody. To this aim, three procedures have been assayed: (1) Site-directed mutagenesis to abolish the glycosylation site; (2) endoplasmic reticulum retention (C-terminal SEKDEL fusion) to ensure predominantly high-mannose type glycans; and (3) expression in a N. benthamiana RNAi down-regulated line in which β1,2-xylosyltransferase and α1,3-fucosyltransferase gene expression is silenced. The three antibody variants (H10-Mut) (H10-SEKDEL) (H10XylT/FucT) were transiently expressed, purified and characterised for their glycosylation profile, expression/purification yield and antibody degradation pattern. Glycosylation analysis of H10XylT/FucT demonstrated the absence of plant complex-type sugars, while H10-SEKDEL, although substantially retained in the ER, revealed the presence of β1,2-xylose and α1,3-fucose residues, indicating a partial escape from the ER retrieval system. Antibody accumulation and purification yields were not enhanced by ER retention. All H10 antibody glyco-forms revealed greater degradation compared to the original, resulting mostly in the formation of Fab fragments. In the case of aglycosylated H10-Mut, more than 95% of the heavy chain was cleaved, confirming the pivotal role of the sugar moiety in protein stability. Identification of possible ‘fragile’ sites in the H10 antibody hinge region could be of general interest for the development of new strategies to reduce antibody degradation and increase the yield of intact IgGs in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bardor M, Faveeuw C, Fitchette AC, Gilbert D, Galas L, Trottein F, Faye L, Lerouge P (2003) Immunoreactivity in mammals of two typical plant glyco-epitopes, core alpha (1,3)-fucose and core xylose. Glycobiology 13(6):427–434

    Google Scholar 

  • Bencúrová M, Hemmer W, Focke-Tejkl M, Wilson IB, Altmann F (2004) Specificity of IgG and IgE antibodies against plant and insect glycoprotein glycans determined with artificial glycoforms of human transferrin. Glycobiology 14(5):457–466

    Article  PubMed  Google Scholar 

  • Castilho A, Strasser R, Stadlmann J, Grass J, Jez J, Gattinger P, Kunert R, Quendler H, Pabst M, Leonard R, Altmann F, Steinkellner H (2010) In planta protein sialylation through overexpression of the respective mammalian pathway. J Biol Chem 285(21):15923–15930

    Article  PubMed  CAS  Google Scholar 

  • Cox KM, Sterling JD, Regan JT, Gasdaska JR, Frantz KK, Peele CG, Black A, Passmore D, Moldovan-Loomis C, Srinivasan M, Cuison S, Cardarelli PM, Dickey LF (2006) Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat Biotechnol 24(12):1591–1597

    Article  PubMed  CAS  Google Scholar 

  • Floss DM, Sack M, Stadlmann J, Rademacher T, Scheller J, Stöger E, Fischer R, Conrad U (2008) Biochemical and functional characterization of anti-HIV antibody-ELP fusion proteins from transgenic plants. Plant Biotechnol J 6(4):379–391

    Article  PubMed  CAS  Google Scholar 

  • Floss DM, Sack M, Arcalis E, Stadlmann J, Quendler H, Rademacher T, Stoger E, Scheller J, Fischer R, Conrad U (2009) Influence of elastin-like peptide fusions on the quantity and quality of a tobacco-derived human immunodeficiency virus-neutralizing antibody. Plant Biotechnol J 7(9):899–913

    Article  PubMed  CAS  Google Scholar 

  • Forthal DN, Gach JS, Landucci G, Jez J, Strasser R, Kunert R, Steinkellner H (2010) Fc-glycosylation influences Fcγ receptor binding and cell-mediated anti-HIV activity of monoclonal antibody 2G12. J Immunol 185(11):6876–6882

    Article  PubMed  CAS  Google Scholar 

  • Fujiyama K, Furukawa A, Katsura A, Misaki R, Omasa T, Seki T (2007) Production of mouse monoclonal antibody with galactose-extended sugar chain by suspension cultured tobacco BY2 cells expressing human beta(1,4)-galactosyltransferase. Biochem Biophys Res Commun 358(1):85–91

    Article  PubMed  CAS  Google Scholar 

  • Gill SC, von Hippel PH (1989) Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem 182(2):319–326

    Article  PubMed  CAS  Google Scholar 

  • Givol D, Zakut R, Effron K, Rechavi G, Ram D, Cohen JB (1981) Diversity of germ-line immunoglobulin VH genes. Nature 292(5822):426–430

    Article  PubMed  CAS  Google Scholar 

  • Gomord V, Fitchette AC, Menu-Bouaouiche L, Saint-Jore-Dupas C, Plasson C, Michaud D, Faye L (2010) Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnol J 8(5):564–587

    Article  PubMed  CAS  Google Scholar 

  • Goulet C, Khalf M, Sainsbury F, D’Aoust MA, Michaud D (2011) A protease activity-depleted environment for heterologous proteins migrating towards the leaf cell apoplast. Plant Biotechnol J, doi:10.1111/j.1467-7652.2011.00643.x [Epub ahead of print]

  • Hadlington J, Santoro A, Nuttal J, Denecke J, Ma JK-C, Vitale A, Frigerio L (2003) The C-terminal extension of a hybrid immunoglobulin A/G heavy chain is responsible for its Golgi-mediated sorting to the vacuole. Mol Biol Cell 14(6):2592–2602

    Article  PubMed  CAS  Google Scholar 

  • Jung ST, Reddy ST, Kang TH, Borrok MJ, Sandlie I, Tucker PW, Georgiou G (2010) Aglycosylated IgG variants expressed in bacteria that selectively bind FcgammaRI potentiate tumor cell killing by monocyte-dendritic cells. Proc Natl Acad Sci USA 107(2):604–609

    Article  PubMed  CAS  Google Scholar 

  • Kajiura H, Seki T, Fujiyama K (2010) Arabidopsis thaliana ALG3 mutant synthesizes immature oligosaccharides in the ER and accumulates unique N-glycans. Glycobiology 20(6):736–751

    Article  PubMed  CAS  Google Scholar 

  • Kaulfürst-Soboll H, Rips S, Koiwa H, Kajiura H, Fujiyama K, von Schaewen A (2011) Reduced immunogenicity of Arabidopsis hgl1 mutant N-glycans caused by altered accessibility of xylose and core fucose epitopes. J Biol Chem 286:22955–22964

    Article  PubMed  Google Scholar 

  • Kayser V, Chennamsetty N, Voynov V, Forrer K, Helk B, Trout BL (2011) Glycosylation influences on the aggregation propensity of therapeutic monoclonal antibodies. Biotechnol J 6(1):38–44

    Article  PubMed  CAS  Google Scholar 

  • Kogelberg H, Tolner B, Sharma SK, Lowdell MW, Qureshi U, Robson M, Hillyer T, Pedley RB, Vervecken W, Contreras R, Begent RH, Chester KA (2007) Clearance mechanism of a mannosylated antibody-enzyme fusion protein used in experimental cancer therapy. Glycobiol 17(1):36–45

    Article  CAS  Google Scholar 

  • Lombardi R, Villani ME, Di Carli M, Brunetti P, Benvenuto E, Donini M (2010) Optimisation of the purification process of a tumour-targeting antibody produced in N. benthamiana using vacuum-agro-infiltration. Transgenic Res 19(6):1083–1097

    Article  PubMed  CAS  Google Scholar 

  • Loos A, Van Droogenbroeck B, Hillmer S, Grass J, Kunert R, Cao J, Robinson DG, Depicker A, Steinkellner H (2011) Production of monoclonal antibodies with a controlled N-glycosylation pattern in seeds of Arabidopsis thaliana. Plant Biotechnol J 9(2):179–192

    Article  PubMed  CAS  Google Scholar 

  • Marusic C, Nuttall J, Buriani G, Lico C, Lombardi R, Baschieri S, Benvenuto E, Frigerio L (2007) Expression, intracellular targeting and purification of HIV Nef variants in tobacco cells. BMC Biotechnol 7:12

    Article  PubMed  Google Scholar 

  • Merril CR, Dunau ML, Goldman D (1981) A rapid sensitive silver stain for polypeptides in polyacrylamide gels. Anal Biochem 110(1):201–207

    Article  PubMed  CAS  Google Scholar 

  • Misaki R, Kimura Y, Fujiyama K, Seki T (2001) Glycoproteins secreted from suspension-cultured tobacco BY2 cells have distinct glycan structures from intracellular glycoproteins. Biosci Biotechnol Biochem 65(11):2482–2488

    Article  PubMed  CAS  Google Scholar 

  • Nuttall J, Ma JK, Frigerio L (2005) A functional antibody lacking N-linked glycans is efficiently folded, assembled and secreted by tobacco mesophyll protoplasts. Plant Biotechnol J 3(5):497–504

    Article  PubMed  CAS  Google Scholar 

  • Pedrazzini E, Giovinazzo G, Bielli A, de Virgilio M, Frigerio L, Pesca M, Faoro F, Bollini R, Ceriotti A, Vitale A (1997) Protein quality control along the route to the plant vacuole. Plant Cell 9(10):1869–1880

    PubMed  CAS  Google Scholar 

  • Petruccelli S, Otegui MS, Lareu F, Tran Dinh O, Fitchette AC, Circosta A, Rumbo M, Bardor M, Carcamo R, Gomord V, Beachy RN (2006) A KDEL-tagged monoclonal antibody is efficiently retained in the endoplasmic reticulum in leaves, but is both partially secreted and sorted to protein storage vacuoles in seeds. Plant Biotechnol J 4(5):511–527

    PubMed  CAS  Google Scholar 

  • Rademacher T, Sack M, Arcalis E, Stadlmann J, Balzer S, Altmann F, Quendler H, Stiegler G, Kunert R, Fischer R, Stoger E (2008) Recombinant antibody 2G12 produced in maize endosperm efficiently neutralizes HIV-1 and contains predominantly single-GlcNAc N-glycans. Plant Biotechnol J 6(2):189–201

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez M, Ramírez NI, Ayala M, Freyre F, Pérez L, Triguero A, Mateo C, Selman-Housein G, Gavilondo JV, Pujol M (2005) Transient expression in tobacco leaves of an aglycosylated recombinant antibody against the epidermal growth factor receptor. Biotechnol Bioeng 89(2):188–194

    Article  PubMed  Google Scholar 

  • Sainsbury F, Sack M, Stadlmann J, Quendler H, Fischer R, Lomonossoff GP (2010) Rapid transient production in plants by replicating and non-replicating vectors yields high quality functional anti-HIV antibody. PLoS One 5:e13976

    Article  PubMed  Google Scholar 

  • Saint-Jore-Dupas C, Faye L, Gomord V (2007) From planta to pharma with glycosylation in the toolbox. Trends Biotechnol 25(7):317–323

    Article  PubMed  CAS  Google Scholar 

  • Schähs M, Strasser R, Stadlmann J, Kunert R, Rademacher T, Steinkellner H (2007) Production of a monoclonal antibody in plants with a humanized N-glycosylation pattern. Plant Biotechnol J 5(5):657–663

    Article  PubMed  Google Scholar 

  • Schillberg S, Fischer R, Emans N (2003) Molecular farming of recombinant antibodies in plants. Cell Mol Life Sci 60(3):433–445

    Google Scholar 

  • Sriraman R, Bardor M, Sack M, Vaquero C, Faye L, Fischer R, Finnern R, Lerouge P (2004) Recombinant anti-hCG antibodies retained in the endoplasmic reticulum of transformed plants lack core-xylose and core-alpha(1,3)-fucose residues. Plant Biotechnol J 2(4):279–287

    Article  PubMed  CAS  Google Scholar 

  • Strasser R, Stadlmann J, Schähs M, Stiegler G, Quendler H, Mach L, Glössl J, Weterings K, Pabst M, Steinkellner H (2008) Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure. Plant Biotechnol J 6:392–402

    Article  PubMed  CAS  Google Scholar 

  • Strasser R, Castilho A, Stadlmann J, Kunert R, Quendler H, Gattinger P, Jez J, Rademacher T, Altmann F, Mach L, Steinkellner H (2009) Improved virus neutralization by plant-produced anti-HIV antibodies with a homogeneous β1,4-galactosylated N-glycan profile. J Biol Chem 284(31):20479–20485

    Article  PubMed  CAS  Google Scholar 

  • Tavladoraki P, Girotti A, Donini M, Arias FJ, Mancini C, Morea V, Chiaraluce R, Consalvi V, Benvenuto E (1999) A single-chain antibody fragment is functionally expressed in the cytoplasm of both Escherichia coli and transgenic plants. Eur J Biochem 262:617–624

    Article  PubMed  CAS  Google Scholar 

  • Tekoah Y, Ko K, Koprowski H, Harvey DJ, Wormald MR, Dwek RA, Rudd PM (2004) Controlled glycosylation of therapeutic antibodies in plants. Arch Biochem Biophys 426:266–278

    Article  PubMed  CAS  Google Scholar 

  • Tomiya N, Lee YC, Yoshida T, Wada Y, Awaya J, Kurono M, Takahashi N (1991) Calculated two-dimensional sugar map of pyridylaminated oligosaccharides: elucidation of the jack bean α-mannosidase digestion pathway of Man9GlcNAc2. Anal Biochem 193:90–100

    Article  PubMed  CAS  Google Scholar 

  • Triguero A, Cabrera G, Cremata JA, Yuen CT, Wheeler J, Ramírez NI (2005) Plant-derived mouse IgG monoclonal antibody fused to KDEL endoplasmic reticulum-retention signal is N-glycosylated homogeneously throughout the plant with mostly high-mannose-type N-glycans. Plant Biotechnol J 3:449–457

    Article  PubMed  CAS  Google Scholar 

  • Twyman RM, Schillberg S, Fischer R (2005) Transgenic plants in the biopharmaceutical market. Exp Opin Emerg Drugs 10:185–218

    Article  CAS  Google Scholar 

  • Vézina LP, Faye L, Lerouge P, D’Aoust MA, Marquet-Blouin E, Burel C, Lavoie PO, Bardor M, Gomord V (2009) Transient co-expression for fast and high-yield production of antibodies with human-like N-glycans in plants. Plant Biotechnol J 7:442–455

    Article  PubMed  Google Scholar 

  • Villani ME, Morgun B, Brunetti P, Marusic C, Lombardi R, Pisoni I, Bacci C, Desiderio A, Benvenuto E, Donini M (2009) Plant pharming of a full-sized, tumour-targeting antibody using different expression strategies. Plant Biotechnol J 7:59–72

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Italian Ministry of Foreign Affairs (Direzione Generale per la Promozione del Sistema Paese) Italy–Japan Bilateral project: ‘Challenge for global health. Plant derived biopharmaceuticals’. We thank Prof. Noriko Inoue of Osaka University and Dr. Claudio Capiglia (Recruit R&D Co., Ltd.) for fostering the scientific cooperation and acting as a liaison between the laboratories. We also thank Dr. Mariasole Di Carli for helpful discussion of the manuscript and Dr Herta Steinkellner for providing XylT/FucT N. benthamiana mutant seeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Donini.

Additional information

The authors Raffaele Lombardi, Marcello Donini and Maria Elena Villani share equal contribution to the work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lombardi, R., Donini, M., Villani, M.E. et al. Production of different glycosylation variants of the tumour-targeting mAb H10 in Nicotiana benthamiana: influence on expression yield and antibody degradation. Transgenic Res 21, 1005–1021 (2012). https://doi.org/10.1007/s11248-012-9587-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-012-9587-1

Keywords

Navigation