Skip to main content
Log in

Comprehensive application of an mtDsRed2-Tg mouse strain for mitochondrial imaging

  • Technical Report
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Mitochondria are essential for many cellular functions such as oxidative phosphorylation and calcium homeostasis; consequently, mitochondrial dysfunction could cause many diseases, including neurological disorders. Recently, mitochondrial dynamics, such as fusion, fission, and transportation, have been visualized in living cells by using time-lapse imaging systems. The changes in mitochondrial morphology could be an indicator for estimating the activity of mitochondrial biological function. Here, we report a transgenic mouse strain, mtDsRed2-Tg, which expresses a red fluorescent protein, DsRed2, exclusively in mitochondria. Mitochondrial morphology could be clearly observed in various tissues of this strain under confocal microscope. Recently, many transgenic mouse strains in which enhanced green fluorescent protein (EGFP)-tagged proteins of interest are expressed have been established for physiological analysis in vivo. After mating these strains with mtDsRed2-Tg mice, red-colored mitochondria and green-colored proteins were detected simultaneously using fluorescent imaging systems, and the interactions between mitochondria and those proteins could be morphologically analyzed in cells and tissues of the F1 hybrids. Thus, mtDsRed2-Tg mice can be a powerful tool for bioimaging studies on mitochondrial functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Alam TI, Kanki T, Muta T, Ukaji K, Abe Y, Nakayama H, Takio K, Hamasaki N, Kang D (2003) Human mitochondrial DNA is packaged with TFAM. Nucleic Acids Res 31(6):1640–1645

    Article  PubMed  CAS  Google Scholar 

  • Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125(7):1241–1252

    Article  PubMed  CAS  Google Scholar 

  • Chen XJ, Butow RA (2005) The organization and inheritance of the mitochondrial genome. Nat Rev Genet 6(11):815–825

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Chan DC (2006) Critical dependence of neurons on mitochondrial dynamics. Curr Opin Cell Biol 18(4):453–459

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160(2):189–200

    Article  PubMed  CAS  Google Scholar 

  • Chen H, McCaffery JM, Chan DC (2007) Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 130(3):548–562

    Article  PubMed  CAS  Google Scholar 

  • Fischer M, Kaech S, Wagner U, Brinkhaus H, Matus A (2000) Glutamate receptors regulate actin-based plasticity in dendritic spines. Nat Neurosci 3(9):887–894

    Article  PubMed  CAS  Google Scholar 

  • Garrido N, Griparic L, Jokitalo E, Wartiovaara J, van der Bliek AM, Spelbrink JN (2003) Composition and dynamics of human mitochondrial nucleoids. Mol Biol Cell 14(4):1583–1596

    Article  PubMed  CAS  Google Scholar 

  • Griparic L, van der Wel NN, Orozco IJ, Peters PJ, van der Bliek AM (2004) Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. J Biol Chem 279(18):18792–18798

    Article  PubMed  CAS  Google Scholar 

  • Gurniak CB, Witke W (2007) HuGE, a novel GFP-actin-expressing mouse line for studying cytoskeletal dynamics. Eur J Cell Biol 86(1):3–12

    Article  PubMed  CAS  Google Scholar 

  • Hasuwa H, Muro Y, Ikawa M, Kato N, Tsujimoto Y, Okabe M (2010) Transgenic mouse sperm that have green acrosome and red mitochondria allow visualization of sperm and their acrosome reaction in vivo. Exp Anim 59(1):105–107

    Article  PubMed  CAS  Google Scholar 

  • Hermann GJ, Shaw JM (1998) Mitochondrial dynamics in yeast. Annu Rev Cell Dev Biol 14:265–303

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa N (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279(5350):519–526

    Article  PubMed  CAS  Google Scholar 

  • Ishihara N, Nomura M, Jofuku A, Kato H, Suzuki SO, Masuda K, Otera H, Nakanishi Y, Nonaka I, Goto Y, Taguchi N, Morinaga H, Maeda M, Takayanagi R, Yokota S, Mihara K (2009) Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol 11(8):958–966

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6(5):513–519

    Article  PubMed  CAS  Google Scholar 

  • Larsson NG, Garman JD, Oldfors A, Barsh GS, Clayton DA (1996) A single mouse gene encodes the mitochondrial transcription factor A and a testis-specific nuclear HMG-box protein. Nat Genet 13(3):296–302

    Article  PubMed  CAS  Google Scholar 

  • Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F, Kimura M, Komatsu M, Hattori N, Tanaka K (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189(2):211–221

    Article  PubMed  CAS  Google Scholar 

  • Misgeld T, Kerschensteiner M, Bareyre FM, Burgess RW, Lichtman JW (2007) Imaging axonal transport of mitochondria in vivo. Nat Methods 4(7):559–561

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki A, Sawano A, Kogure T (2003) Lighting up cells: labelling proteins with fluorophores. Nat Cell Biol (Suppl) 5:S1–S7

    Google Scholar 

  • Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15(3):1101–1111

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama S, Shitara H, Nakada K, Ono T, Sato A, Suzuki H, Ogawa T, Masaki H, Hayashi JI, Yonekawa H (2010) Over-expression of Tfam improves the mitochondrial disease phenotypes in a mouse model system. Biochem Biophys Res Commun 401(1):26–31

    Article  PubMed  CAS  Google Scholar 

  • Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108(2):193–199

    Article  PubMed  CAS  Google Scholar 

  • Ono T, Isobe K, Nakada K, Hayashi JI (2001) Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria. Nat Genet 28(3):272–275

    Article  PubMed  CAS  Google Scholar 

  • Rizzuto R, Brini M, Pizzo P, Murgia M, Pozzan T (1995) Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Curr Biol 5(6):635–642

    Article  PubMed  CAS  Google Scholar 

  • Rizzuto R, Bernardi P, Pozzan T (2000) Mitochondria as all-round players of the calcium game. J Physiol 529(Pt 1):37–47

    Article  PubMed  CAS  Google Scholar 

  • Sachs G, Chang HH, Rabon E, Schackman R, Lewin M, Saccomani G (1976) A nonelectrogenic H+ pump in plasma membranes of hog stomach. J Biol Chem 251(23):7690–7698

    PubMed  CAS  Google Scholar 

  • Seligman AM, Karnovsky MJ, Wasserkrug HL, Hanker JS (1968) Nondroplet ultrastructural demonstration of cytochrome oxidase activity with a polymerizing osmiophilic reagent, diaminobenzidine (DAB). J Cell Biol 38(1):1–14

    Article  PubMed  CAS  Google Scholar 

  • Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2(12):905–909

    Article  PubMed  CAS  Google Scholar 

  • Shitara H, Kaneda H, Sato A, Iwasaki K, Hayashi JI, Taya C, Yonekawa H (2001) Non-invasive visualization of sperm mitochondria behavior in transgenic mice with introduced green fluorescent protein (GFP). FEBS Lett 500(1–2):7–11

    Article  PubMed  CAS  Google Scholar 

  • Shitara H, Shimanuki M, Hayashi JI, Yonekawa H (2010) Global imaging of mitochondrial morphology in tissues using transgenic mice expressing mitochondrially targeted enhanced green fluorescent protein. Exp Anim 59(1):99–103

    Article  PubMed  CAS  Google Scholar 

  • Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  PubMed  CAS  Google Scholar 

  • Yaffe MP (1999) Dynamic mitochondria. Nat Cell Biol 1(6):E149–E150

    Article  PubMed  CAS  Google Scholar 

  • Ylikallio E, Tyynismaa H, Tsutsui H, Ide T, Suomalainen A (2010) High mitochondrial DNA copy number has detrimental effects in mice. Hum Mol Genet 19(13):2695–2705

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. J. Miyazaki for providing pCAGGS, Dr. L. Cao for valuable comments. This study was supported by Grants-in-Aid for Scientific Research (A) and (S) (to H. Yonekawa and J.-I. Hayashi), for Challenging Exploratory Research (to H. Yonekawa), and for Young Scientists (A) (to H. Shitara) from the Japan Society for the Promotion of Science and the Ministry of Education, Culture, Sports, Science, and Technology and by the Takeda Science Foundation research grant (to H. Yonekawa).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Shitara.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, J., Nishiyama, S., Shimanuki, M. et al. Comprehensive application of an mtDsRed2-Tg mouse strain for mitochondrial imaging. Transgenic Res 21, 439–447 (2012). https://doi.org/10.1007/s11248-011-9539-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-011-9539-1

Keywords

Navigation