Skip to main content

Advertisement

Log in

Gene expression profiling in the submandibular gland, stomach, and duodenum of CAVI-deficient mice

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

An Erratum to this article was published on 16 February 2011

Abstract

Carbonic anhydrase VI (CAVI) is the only secreted isozyme of the α-carbonic anhydrase family, which catalyzes the reversible reaction \( {\text{CO}}_{2} + {\text{H}}_{2} {\text{O}} \Leftrightarrow {\text{HCO}}_{3}^{ - } + {\text{H}}^{ + } \). It appears that CAVI protects teeth and gastrointestinal mucosa by neutralizing excess acidity. However, the evidence for this physiological function is limited, and CAVI may have additional functions that have yet to be discovered. To explore the functions of CAVI more fully, we generated Car6 / mice and analyzed Car6 / mutant phenotypes. We also examined transcriptomic responses to CAVI deficiency in the submandibular gland, stomach, and duodenum of Car6 / mice. Car6 / mice were viable and fertile and had a normal life span. Histological analyses indicated a greater number of lymphoid follicles in the small intestinal Peyer’s patches. A total of 94, 56, and 127 genes were up- or down-regulated in the submandibular gland, stomach, and duodenum of Car6 / mice, respectively. The functional clustering of differentially expressed genes revealed a number of altered biological processes. In the duodenum, the significantly affected biological pathways included the immune system process and retinol metabolic processes. The response to oxidative stress and brown fat cell differentiation changed remarkably in the submandibular gland. Notably, the submandibular gland, stomach, and duodenum shared one important transcriptional susceptibility pathway: catabolic process. Real-time PCR confirmed an altered expression in 14 of the 16 selected genes. The generation and of Car6 / mice and examination of the effects of CAVI deficiency on gene transcription have revealed several affected clusters of biological processes, which implicate CAVI in catabolic processes and the immune system response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

CA:

Carbonic anhydrase

ERG:

Electroretinogram

ES:

Embryo stem

GO:

Gene ontology

PAGE:

Polyacrylamide gel electrophoresis

PBS:

Phosphate-buffered saline

qRT–PCR:

Quantitative real-time polymerase chain reaction

RT-PCR:

Reverse transcription-polymerase chain reaction

SDS:

Sodium dodecyl sulfate

TK:

Thymidine kinase

VLAD:

Visual annotation display

References

  • Amasaki H, Arai R, Ogawa M, Takemura N, Yamagami T, Nagasao J, Mutoh K, Ichihara N, Asari M (2003) Postnatal development of the mouse volatile papilla taste bud cells. J Vet Med Sci 65:541–543

    Article  PubMed  Google Scholar 

  • Benjamin D, Schmidlin M, Min L, Gross B, Moroni C (2006) BRF1 protein turnover and mRNA decay activity are regulated by protein kinase B at the same phosphorylation sites. Mol Cell Biol 26:9497–9507

    Article  PubMed  CAS  Google Scholar 

  • Birley AJ, James MR, Dickson PA, Montgomery GW, Heath AC, Whitfield JB, Martin NG (2008) Association of the gastric alcohol dehydrogenase gene ADH7 with variation in alcohol metabolism. Hum Mol Genet 17:179–189

    Article  PubMed  CAS  Google Scholar 

  • Eskildsen S, Justesen J, Schierup MH, Hartmann R (2003) Characterization of the 2′-5′-oligoadenylate synthetase ubiquitin-like family. Nucleic Acids Res 31:3166–3173

    Article  PubMed  CAS  Google Scholar 

  • Fernley RT, Wright RD, Coghlan JP (1979) A novel carbonic anhydrase from the ovine parotid gland. FEBS Lett 105:299–302

    Article  PubMed  CAS  Google Scholar 

  • Fujikawa-Adachi K, Nishimori I, Sakamoto S, Morita M, Onishi S, Yonezawa S, Hollingsworth MA (1999) Identification of carbonic anhydrase IV and VI mRNA expression in human pancreas and salivary glands. Pancreas 18:329–335

    Article  PubMed  CAS  Google Scholar 

  • Gut MO, Parkkila S, Vernerova Z, Rohde E, Zavada J, Hocker M, Pastorek J, Karttunen T, Gibadulinova A, Zavadova Z, Knobeloch KP, Wiedenmann B, Svoboda J, Horak I, Pastorekova S (2002) Gastric hyperplasia in mice with targeted disruption of the carbonic anhydrase gene Car9. Gastroenterology 123:1889–1903

    Article  PubMed  CAS  Google Scholar 

  • Henkin RI, Martin BM, Agarwal RP (1999) Efficacy of exogenous oral zinc in treatment of patients with carbonic anhydrase VI deficiency. Am J Med Sci 318:392–405

    Article  PubMed  CAS  Google Scholar 

  • Hilvo M, Tolvanen M, Clark A, Shen B, Shah GN, Waheed A, Halmi P, Hanninen M, Hamalainen JM, Vihinen M, Sly WS, Parkkila S (2005) Characterization of CA XV, a new GPI-anchored form of carbonic anhydrase. Biochem J 392:83–92

    Article  PubMed  CAS  Google Scholar 

  • Hiraoka N, Kawashima H, Petryniak B, Nakayama J, Mitoma J, Marth JD, Lowe JB, Fukuda M (2004) Core 2 branching beta1, 6-N-acetylglucosaminyltransferase and high endothelial venule-restricted sulfotransferase collaboratively control lymphocyte homing. J Biol Chem 279:3058–3067

    Article  PubMed  CAS  Google Scholar 

  • Imbach T, Burda P, Kuhnert P, Wevers RA, Aebi M, Berger EG, Hennet T (1999) A mutation in the human ortholog of the Saccharomyces cerevisiae ALG6 gene causes carbohydrate-deficient glycoprotein syndrome type-Ic. Proc Natl Acad Sci USA 96:6982–6987

    Article  PubMed  CAS  Google Scholar 

  • Jovov B, Van Itallie CM, Shaheen NJ, Carson JL, Gambling TM, Anderson JM, Orlando RC (2007) Claudin-18: a dominant tight junction protein in Barrett’s esophagus and likely contributor to its acid resistance. Am J Physiol Gastrointest Liver Physiol 293:G1106–G1113

    Article  PubMed  CAS  Google Scholar 

  • Karhumaa P, Leinonen J, Parkkila S, Kaunisto K, Tapanainen J, Rajaniemi H (2001) The identification of secreted carbonic anhydrase VI as a constitutive glycoprotein of human and rat milk. Proc Natl Acad Sci USA 98:11604–11608

    Article  PubMed  CAS  Google Scholar 

  • Kaseda M, Ichihara N, Nishita T, Amasaki H, Asari M (2006) Immunohistochemistry of the bovine secretory carbonic anhydrase isozyme (CA-VI) in bovine alimentary canal and major salivary glands. J Vet Med Sci 68:131–135

    Article  PubMed  CAS  Google Scholar 

  • Kasuya T, Shibata S, Kaseda M, Ichihara N, Nishita T, Murakami M, Asari M (2007) Immunohistolocalization and gene expression of the secretory carbonic anhydrase isozymes (CA-VI) in canine oral mucosa, salivary glands and oesophagus. Anat Histol Embryol 36:53–57

    Article  PubMed  CAS  Google Scholar 

  • Kim KI, Zhang DE (2003) ISG15, not just another ubiquitin-like protein. Biochem Biophys Res Commun 307:431–434

    Article  PubMed  CAS  Google Scholar 

  • Kim G, Lee TH, Wetzel P, Geers C, Robinson MA, Myers TG, Owens JW, Wehr NB, Eckhaus MW, Gros G, Wynshaw-Boris A, Levine RL (2004) Carbonic anhydrase III is not required in the mouse for normal growth, development, and life span. Mol Cell Biol 24:9942–9947

    Article  PubMed  CAS  Google Scholar 

  • Kimoto M, Iwai S, Maeda T, Yura Y, Fernley RT, Ogawa Y (2004) Carbonic anhydrase VI in the mouse nasal gland. J Histochem Cytochem 52:1057–1062

    Article  PubMed  CAS  Google Scholar 

  • Kimoto M, Kishino M, Yura Y, Ogawa Y (2006) A role of salivary carbonic anhydrase VI in dental plaque. Arch Oral Biol 51:117–122

    Article  PubMed  CAS  Google Scholar 

  • Kivela J, Parkkila S, Waheed A, Parkkila AK, Sly WS, Rajaniemi H (1997) Secretory carbonic anhydrase isoenzyme (CA VI) in human serum. Clin Chem 43:2318–2322

    PubMed  CAS  Google Scholar 

  • Kivela J, Parkkila S, Parkkila AK, Rajaniemi H (1999) A low concentration of carbonic anhydrase isoenzyme VI in whole saliva is associated with caries prevalence. Caries Res 33:178–184

    Article  PubMed  CAS  Google Scholar 

  • Kivela AJ, Parkkila S, Saarnio J, Karttunen TJ, Kivela J, Parkkila AK, Bartosova M, Mucha V, Novak M, Waheed A, Sly WS, Rajaniemi H, Pastorekova S, Pastorek J (2005) Expression of von Hippel-Lindau tumor suppressor and tumor-associated carbonic anhydrases IX and XII in normal and neoplastic colorectal mucosa. World J Gastroenterol 11:2616–2625

    PubMed  CAS  Google Scholar 

  • Ku HO, Jeong SH, Kang HG, Pyo HM, Cho JH, Son SW, Yun SM, Ryu DY (2009) Gene expression profiles and pathways in skin inflammation induced by three different sensitizers and an irritant. Toxicol Lett 190:231–237

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lehtonen J, Shen B, Vihinen M, Casini A, Scozzafava A, Supuran CT, Parkkila AK, Saarnio J, Kivela AJ, Waheed A, Sly WS, Parkkila S (2004) Characterization of CA XIII, a novel member of the carbonic anhydrase isozyme family. J Biol Chem 279:2719–2727

    Article  PubMed  CAS  Google Scholar 

  • Leinonen J, Parkkila S, Kaunisto K, Koivunen P, Rajaniemi H (2001) Secretion of carbonic anhydrase isoenzyme VI (CA VI) from human and rat lingual serous von Ebner’s glands. J Histochem Cytochem 49:657–662

    Article  PubMed  CAS  Google Scholar 

  • Leinonen JS, Saari KA, Seppanen JM, Myllyla HM, Rajaniemi HJ (2004) Immunohistochemical demonstration of carbonic anhydrase isoenzyme VI (CA VI) expression in rat lower airways and lung. J Histochem Cytochem 52:1107–1112

    Article  PubMed  CAS  Google Scholar 

  • Leppilampi M, Parkkila S, Karttunen T, Gut MO, Gros G, Sjoblom M (2005) Carbonic anhydrase isozyme-II-deficient mice lack the duodenal bicarbonate secretory response to prostaglandin E2. Proc Natl Acad Sci USA 102:15247–15252

    Article  PubMed  CAS  Google Scholar 

  • Lewis SE, Erickson RP, Barnett LB, Venta PJ, Tashian RE (1988) N-ethyl-N-nitrosourea-induced null mutation at the mouse Car-2 locus: an animal model for human carbonic anhydrase II deficiency syndrome. Proc Natl Acad Sci USA 85:1962–1966

    Article  PubMed  CAS  Google Scholar 

  • Liu YC, Penninger J, Karin M (2005) Immunity by ubiquitylation: a reversible process of modification. Nat Rev Immunol 5:941–952

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Walter GA, Pathare NC, Forster RE, Vandenborne K (2007) A quantitative study of bioenergetics in skeletal muscle lacking carbonic anhydrase III using 31P magnetic resonance spectroscopy. Proc Natl Acad Sci USA 104:371–376

    Article  PubMed  CAS  Google Scholar 

  • Marks PW, Arai M, Bandura JL, Kwiatkowski DJ (1998) Advillin (p92): a new member of the gelsolin/villin family of actin regulatory proteins. J Cell Sci 111(Pt 15):2129–2136

    PubMed  CAS  Google Scholar 

  • Morey JS, Ryan JC, Van Dolah FM (2006) Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biol Proced Online 8:175–193

    Article  PubMed  CAS  Google Scholar 

  • Murakami H, Sly WS (1987) Purification and characterization of human salivary carbonic anhydrase. J Biol Chem 262:1382–1388

    PubMed  CAS  Google Scholar 

  • Murakami M, Kasuya T, Matsuba C, Ichihara N, Nishita T, Fujitani H, Asari M (2003) Nucleotide sequence and expression of a cDNA encoding canine carbonic anhydrase VI (CA-VI). DNA Seq 14:195–198

    PubMed  CAS  Google Scholar 

  • Nezu A, Morita T, Tanimura A, Tojyo Y (2002) Comparison of amylase mRNAs from rat parotid gland, pancreas and liver using reverse transcriptase-polymerase chain reaction. Arch Oral Biol 47:563–566

    Article  PubMed  CAS  Google Scholar 

  • Nomura S, Yamaguchi H, Ogawa M, Wang TC, Lee JR, Goldenring JR (2005) Alterations in gastric mucosal lineages induced by acute oxyntic atrophy in wild-type and gastrin-deficient mice. Am J Physiol Gastrointest Liver Physiol 288:G362–G375

    Article  PubMed  CAS  Google Scholar 

  • Ogawa Y, Matsumoto K, Maeda T, Tamai R, Suzuki T, Sasano H, Fernley RT (2002) Characterization of lacrimal gland carbonic anhydrase VI. J Histochem Cytochem 50:821–827

    Article  PubMed  CAS  Google Scholar 

  • Ogilvie JM, Ohlemiller KK, Shah GN, Ulmasov B, Becker TA, Waheed A, Hennig AK, Lukasiewicz PD, Sly WS (2007) Carbonic anhydrase XIV deficiency produces a functional defect in the retinal light response. Proc Natl Acad Sci USA 104:8514–8519

    Article  PubMed  CAS  Google Scholar 

  • Oien KA, McGregor F, Butler S, Ferrier RK, Downie I, Bryce S, Burns S, Keith WN (2004) Gastrokine 1 is abundantly and specifically expressed in superficial gastric epithelium, down-regulated in gastric carcinoma, and shows high evolutionary conservation. J Pathol 203:789–797

    Article  PubMed  CAS  Google Scholar 

  • Pan P, Leppilampi M, Pastorekova S, Pastorek J, Waheed A, Sly WS, Parkkila S (2006) Carbonic anhydrase gene expression in CA II-deficient (Car2−/−) and CA IX-deficient (Car9−/−) mice. J Physiol 571:319–327

    Article  PubMed  CAS  Google Scholar 

  • Pan PW, Rodriguez A, Parkkila S (2007) A systematic quantification of carbonic anhydrase transcripts in the mouse digestive system. BMC Mol Biol 8:22

    Article  PubMed  Google Scholar 

  • Parkkila S, Kaunisto K, Rajaniemi L, Kumpulainen T, Jokinen K, Rajaniemi H (1990) Immunohistochemical localization of carbonic anhydrase isoenzymes VI, II, and I in human parotid and submandibular glands. J Histochem Cytochem 38:941–947

    Article  PubMed  CAS  Google Scholar 

  • Parkkila S, Parkkila AK, Vierjoki T, Stahlberg T, Rajaniemi H (1993) Competitive time-resolved immunofluorometric assay for quantifying carbonic anhydrase VI in saliva. Clin Chem 39:2154–2157

    PubMed  CAS  Google Scholar 

  • Parkkila S, Parkkila AK, Juvonen T, Rajaniemi H (1994) Distribution of the carbonic anhydrase isoenzymes I, II, and VI in the human alimentary tract. Gut 35:646–650

    Article  PubMed  CAS  Google Scholar 

  • Parkkila S, Parkkila AK, Lehtola J, Reinila A, Sodervik HJ, Rannisto M, Rajaniemi H (1997) Salivary carbonic anhydrase protects gastroesophageal mucosa from acid injury. Dig Dis Sci 42:1013–1019

    Article  PubMed  CAS  Google Scholar 

  • Pastorekova S, Parkkila S, Pastorek J, Supuran CT (2004) Carbonic anhydrases: current state of the art, therapeutic applications and future prospects. J Enzyme Inhib Med Chem 19:199–229

    Article  PubMed  CAS  Google Scholar 

  • Rempel LA, Austin KJ, Ritchie KJ, Yan M, Shen M, Zhang DE, Henkes LE, Hansen TR (2007) Ubp43 gene expression is required for normal Isg15 expression and fetal development. Reprod Biol Endocrinol 5:13

    Article  PubMed  Google Scholar 

  • Rodriguez A, Luukkaala T, Fleming RE, Britton RS, Bacon BR, Parkkila S (2009) Global transcriptional response to Hfe deficiency and dietary iron overload in mouse liver and duodenum. PLoS One 4:e7212

    Article  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

  • Schubert ML (2008) Gastric secretion. Curr Opin Gastroenterol 24:659–664

    Article  PubMed  Google Scholar 

  • Shah GN, Ulmasov B, Waheed A, Becker T, Makani S, Svichar N, Chesler M, Sly WS (2005) Carbonic anhydrase IV and XIV knockout mice: roles of the respective carbonic anhydrases in buffering the extracellular space in brain. Proc Natl Acad Sci USA 102:16771–16776

    Article  PubMed  CAS  Google Scholar 

  • Sly WS, Hu PY (1995) Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu Rev Biochem 64:375–401

    Article  PubMed  CAS  Google Scholar 

  • Sok J, Wang XZ, Batchvarova N, Kuroda M, Harding H, Ron D (1999) CHOP-Dependent stress-inducible expression of a novel form of carbonic anhydrase VI. Mol Cell Biol 19:495–504

    PubMed  CAS  Google Scholar 

  • Stumpo DJ, Byrd NA, Phillips RS, Ghosh S, Maronpot RR, Castranio T, Meyers EN, Mishina Y, Blackshear PJ (2004) Chorioallantoic fusion defects and embryonic lethality resulting from disruption of Zfp36L1, a gene encoding a CCCH tandem zinc finger protein of the Tristetraprolin family. Mol Cell Biol 24:6445–6455

    Article  PubMed  CAS  Google Scholar 

  • Tumer Z, Croucher PJ, Jensen LR, Hampe J, Hansen C, Kalscheuer V, Ropers HH, Tommerup N, Schreiber S (2002) Genomic structure, chromosome mapping and expression analysis of the human AVIL gene, and its exclusion as a candidate for locus for inflammatory bowel disease at 12q13–14 (IBD2). Gene 288:179–185

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Paszty C, Turetsky T, Tsai S, Kuypers FA, Lee G, Cooper P, Gallagher PG, Stevens ME, Rubin E, Mohandas N, Mentzer WC (1999) Stomatocytosis is absent in “stomatin”-deficient murine red blood cells. Blood 93:2404–2410

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Zahid Shah, PhD, for valuable help in the construction of the targeting vector, and Alejandra Rodriguez Martinez, PhD, Marja Paloniemi, and the Biocenter Oulu Transgenic Core Facility for the technical assistance. This work was supported by grants from the Academy of Finland, the EU Framework 6 program (DeZnIT), and the Medical Fund of the Tampere University Hospital (9L071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-wen Pan.

Additional information

The authors Pei-wen Pan and Katri Käyrä contributed equally to this work.

An erratum to this article can be found at http://dx.doi.org/10.1007/s11248-011-9487-9

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, Pw., Käyrä, K., Leinonen, J. et al. Gene expression profiling in the submandibular gland, stomach, and duodenum of CAVI-deficient mice. Transgenic Res 20, 675–698 (2011). https://doi.org/10.1007/s11248-010-9441-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-010-9441-2

Keywords

Navigation