Skip to main content

Advertisement

Log in

Hairpin transcription does not necessarily lead to efficient triggering of the RNAi pathway

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Previously, we had shown that stable expression of a hairpin RNA sharing homology with the coat protein (CP) of the Cucumber mosaic virus (CMV) (hpRNACMV) produced CMV resistant Nicotiana tabacum plants. However, only 17% of the hpRNACMV-expressing plants generated substantial amounts of siRNAs that mediated CMV resistance (siRNAsCMV). Here, we demonstrate that the transcription of a hpRNACMV per se is not sufficient to trigger cytoplasmic and nuclear RNAi. A multiple-transgene copy line showed a strong resistance phenotype. Segregation of individual copies revealed that in one locus, the transgene-produced hpRNACMV transcript was processed into 21-nt and 24-nt siRNAsCMV and lines containing this locus were resistant. At a second locus, where the transgene was shown to be transcribed, no siRNAsCMV were produced and lines harbouring only this locus were susceptible. In addition, the second locus failed to trigger de novo RNA-directed DNA methylation (RdDM) in cis, of its cognate sequence. However, after being induced in trans, methylation in the transcribed region of the transgene was maintained in both CG and CHG residues. Sequence-specific maintenance of methylation in transcribed regions, as well as diverse RNA degradation pathways in plants are discussed in view of our observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andika IB, Kondo H, Rahim MD, Tamada T (2006) Lower levels of transgene silencing in roots is associated with reduced DNA methylation levels at non-symmetrical sites but not at symmetrical sites. Plant Mol Biol 60:423–435

    Article  CAS  PubMed  Google Scholar 

  • Aufsatz W, Mette MF, van der Winden J, Matzke AJ, Matzke M (2002) RNA-directed DNA methylation in Arabidopsis. Proc Natl Acad Sci U S A 99(Suppl 4):16499–16506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  CAS  PubMed  Google Scholar 

  • Baulcombe D (2005) RNA silencing. Trends Biochem Sci 30:290–293

    Article  CAS  PubMed  Google Scholar 

  • Boutla A, Kalantidis K, Tavernarakis N, Tsagris M, Tabler M (2002) Induction of RNA interference in Caenorhabditis elegans by RNAs derived from plants exhibiting post-transcriptional gene silencing. Nucleic Acids Res 30:1688–1694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science (New York, N.Y.) 320:1185–1190

  • Dalakouras A, Moser M, Zwiebel M, Krczal G, Hell R, Wassenegger M (2009) A hairpin RNA construct residing in an intron efficiently triggered RNA-directed DNA methylation in tobacco. Plant J 60:840–851

    Article  CAS  PubMed  Google Scholar 

  • Dalakouras A, Moser M, Krczal G, Wassenegger M (2010) A chimeric satellite transgene sequence is inefficiently targeted by viroid-induced DNA methylation in tobacco. Plant Mol Biol 73:439–447

    Article  CAS  PubMed  Google Scholar 

  • Daxinger L, Kanno T, Bucher E, van der Winden J, Naumann U, Matzke AJ, Matzke M (2009) A stepwise pathway for biogenesis of 24-nt secondary siRNAs and spreading of DNA methylation. EMBO J 28:48–57

    Article  CAS  PubMed  Google Scholar 

  • Dieguez MJ, Vaucheret H, Paszkowski J, Mittelsten Scheid O (1998) Cytosine methylation at CG and CNG sites is not a prerequisite for the initiation of transcriptional gene silencing in plants, but it is required for its maintenance. Mol Gen Genet 259:207–215

    Article  CAS  PubMed  Google Scholar 

  • Fischer U, Kuhlmann M, Pecinka A, Schmidt R, Mette MF (2008) Local DNA features affect RNA-directed transcriptional gene silencing and DNA methylation. Plant J 53:1–10

    Article  CAS  PubMed  Google Scholar 

  • Fojtova M, Bleys A, Bedrichova J, Van Houdt H, Krizova K, Depicker A, Kovarik A (2006) The trans-silencing capacity of invertedly repeated transgenes depends on their epigenetic state in tobacco. Nucleic Acids Res 34:2280–2293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fruscoloni P, Zamboni M, Baldi MI, Tocchini-Valentini GP (2003) Exonucleolytic degradation of double-stranded RNA by an activity in Xenopus laevis germinal vesicles. Proc Natl Acad Sci U S A 100:1639–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuks F (2005) DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev 15:490–495

    Article  CAS  PubMed  Google Scholar 

  • Fusaro AF, Matthew L, Smith NA, Curtin SJ, Dedic-Hagan J, Ellacott GA, Watson JM, Wang MB, Brosnan C, Carroll BJ, Waterhouse PM (2006) RNA interference-inducing hairpin RNAs in plants act through the viral defence pathway. EMBO Rep 7:1168–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gazzani S, Lawrenson T, Woodward C, Headon D, Sablowski R (2004) A link between mRNA turnover and RNA interference in Arabidopsis. Science (New York, N.Y.) 306:1046–1048

  • Goldman SR, Ebright RH, Nickels BE (2009) Direct detection of abortive RNA transcripts in vivo. Science (New York, N.Y.) 324:927–928

  • Hammann C, Tabler M (1999) Quantitative recovery of nucleic acids from excised gel pieces by isotachophoresis. BioTechniques 26:422–424

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Griffiths A, Li H, Grierson D (2004) The effect of endogenous mRNA levels on co-suppression in tomato. FEBS Lett 563:123–128

    Article  CAS  PubMed  Google Scholar 

  • Hirai S, Oka S, Adachi E, Kodama H (2007) The effects of spacer sequences on silencing efficiency of plant RNAi vectors. Plant Cell Rep 26:651–659

    Article  CAS  PubMed  Google Scholar 

  • Jackson JP, Lindroth AM, Cao X, Jacobsen SE (2002) Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416:556–560

    Article  CAS  PubMed  Google Scholar 

  • Jones L, Hamilton AJ, Voinnet O, Thomas CL, Maule AJ, Baulcombe DC (1999) RNA-DNA interactions and DNA methylation in post-transcriptional gene silencing. Plant Cell 11:2291–2301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones L, Ratcliff F, Baulcombe DC (2001) RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance. Curr Biol 11:747–757

    Article  CAS  PubMed  Google Scholar 

  • Kalantidis K, Psaradakis S, Tabler M, Tsagris M (2002) The occurrence of CMV-specific short Rnas in transgenic tobacco expressing virus-derived double-stranded RNA is indicative of resistance to the virus. Mol Plant Microbe Interact 15:826–833

    Article  CAS  PubMed  Google Scholar 

  • Kalantidis K, Tsagris M, Tabler M (2006) Spontaneous short-range silencing of a GFP transgene in Nicotiana benthamiana is possibly mediated by small quantities of siRNA that do not trigger systemic silencing. Plant J 45:1006–1016

    Article  CAS  PubMed  Google Scholar 

  • Kanno T, Aufsatz W, Jaligot E, Mette MF, Matzke M, Matzke AJ (2005) A SNF2-like protein facilitates dynamic control of DNA methylation. EMBO Rep 6:649–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kessler M, Mathews MB (1992) Premature termination and processing of human immunodeficiency virus type 1-promoted transcripts. J Virol 66:4488–4496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koscianska E, Kalantidis K, Wypijewski K, Sadowski J, Tabler M (2005) Analysis of RNA silencing in agroinfiltrated leaves of Nicotiana benthamiana and Nicotiana tabacum. Plant Mol Biol 59:647–661

    Article  CAS  PubMed  Google Scholar 

  • Lichner Z, Silhavy D, Burgyan J (2003) Double-stranded RNA-binding proteins could suppress RNA interference-mediated antiviral defences. J Gen Virol 84:975–980

    Article  CAS  PubMed  Google Scholar 

  • Luo C, Durgin BG, Watanabe N, Lam E (2009) Defining the functional network of epigenetic regulators in Arabidopsis thaliana. Mol Plant 2:661–674

    Article  CAS  PubMed  Google Scholar 

  • Lunerova-Bedrichova J, Bleys A, Fojtova M, Khaitova L, Depicker A, Kovarik A (2008) Trans-generation inheritance of methylation patterns in a tobacco transgene following a post-transcriptional silencing event. Plant J 54:1049–1062

    Article  CAS  PubMed  Google Scholar 

  • Matzke M, Mette MF, Jakowitsch J, Kanno T, Moscone EA, van der Winden J, Matzke AJ (2001) A test for transvection in plants: DNA pairing may lead to trans-activation or silencing of complex heteroalleles in tobacco. Genetics 158:451–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matzke M, Aufsatz W, Kanno T, Daxinger L, Papp I, Mette MF, Matzke AJ (2004) Genetic analysis of RNA-mediated transcriptional gene silencing. Biochim Biophys Acta 1677:129–141

    Article  CAS  PubMed  Google Scholar 

  • Matzke M, Kanno T, Huettel B, Daxinger L, Matzke AJ (2007) Targets of RNA-directed DNA methylation. Curr Opin Plant Biol 10:512–519

    Article  CAS  PubMed  Google Scholar 

  • Meyers BC, Green PJ, Lu C (2008) miRNAs in the plant genome: all things great and small. Genome Dyn 4:108–118

    Article  CAS  PubMed  Google Scholar 

  • Missiou A, Kalantidis K, Boutla A, Tzortzakaki S, Tabler M, Tsagris M (2004) Generation of transgenic potato plants highly resistant to potato virus Y (PVY) through RNA silencing. Mol Breed 14:185–197

    Article  CAS  Google Scholar 

  • Pelissier T, Thalmeir S, Kempe D, Sanger HL, Wassenegger M (1999) Heavy de novo methylation at symmetrical and non-symmetrical sites is a hallmark of RNA-directed DNA methylation. Nucleic Acids Res 27:1625–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosin FM, Watanabe N, Cacas JL, Kato N, Arroyo JM, Fang Y, May B, Vaughn M, Simorowski J, Ramu U, McCombie RW, Spector DL, Martienssen RA, Lam E (2008) Genome-wide transposon tagging reveals location-dependent effects on transcription and chromatin organization in Arabidopsis. Plant J 55:514–525

    Google Scholar 

  • Ruiz MT, Voinnet O, Baulcombe DC (1998) Initiation and maintenance of virus-induced gene silencing. Plant Cell 10:937–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwind N, Zwiebel M, Itaya A, Ding B, Wang MB, Krczal G, Wassenegger M (2009) RNAi-mediated resistance to Potato spindle tuber viroid in transgenic tomato expressing a viroid hairpin RNA construct. Mol Plant Pathol 10:459–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Total silencing by intron-spliced hairpinRNAs. Nature 407:319–320

    Article  CAS  PubMed  Google Scholar 

  • Szittya G, Silhavy D, Molnar A, Havelda Z, Lovas A, Lakatos L, Banfalvi Z, Burgyan J (2003) Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. EMBO J 22:633–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanderschuren H, Alder A, Zhang P, Gruissem W (2009) Dose-dependent RNAi-mediated geminivirus resistance in the tropical root crop cassava. Plant Mol Biol 70:265–272

    Article  CAS  PubMed  Google Scholar 

  • Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20:759–771

    Article  CAS  PubMed  Google Scholar 

  • Vaucheret H (2008) Plant ARGONAUTES. Trends Plant Sci 13:350–358

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O (2008) Use tolerance and avoidance of amplified RNA silencing by plants. Trends Plant Sci 13:317–328

    Article  CAS  PubMed  Google Scholar 

  • Wang MB, Metzlaff M (2005) RNA silencing and antiviral defense in plants. Curr Opin Plant Biol 8:216–222

    Article  PubMed  CAS  Google Scholar 

  • Wang MB, Abbot DC, Waterhouse PM (2000) A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Mol Plant Pathol 1:347–356

    Article  CAS  PubMed  Google Scholar 

  • Wassenegger M (2005) The role of the RNAi machinery in heterochromatin formation. Cell 122:13–16

    Article  CAS  PubMed  Google Scholar 

  • Wassenegger M, Heimes S, Sanger HL (1994) An infectious viroid RNA replicon evolved from an in vitro-generated non-infectious viroid deletion mutant via a complementary deletion in vivo. EMBO J 13:6172–6177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wierzbicki AT, Ream TS, Haag JR, Pikaard CS (2009) RNA polymerase V transcription guides ARGONAUTE4 to chromatin. Nat Genet 41:630–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are thankful to Dr. Joszef Burgyan for providing the Reo-sigma 3 protein and Sergia Tzortzakaki for technical assistance. This work was supported by the grants of the Sixth Research Framework Programs of the European Union, Project LSHG-CT-2006-037900 (SIROCCO) and LSHG-CT-2004-005120 (FOSRAK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kriton Kalantidis.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalakouras, A., Tzanopoulou, M., Tsagris, M. et al. Hairpin transcription does not necessarily lead to efficient triggering of the RNAi pathway. Transgenic Res 20, 293–304 (2011). https://doi.org/10.1007/s11248-010-9416-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-010-9416-3

Keywords

Navigation