Skip to main content
Log in

Widespread expression of the Supv3L1 mitochondrial RNA helicase in the mouse

  • Brief Communication
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Supv3L1 is an evolutionarily conserved helicase that plays a critical role in the mitochondrial RNA surveillance and degradation machinery. Conditional ablation of Supv3L1 in adult mice leads to premature aging phenotypes including loss of muscle mass and adipose tissue and severe skin abnormalities. To get insights into the spatial and temporal expression of Supv3L1 in the mouse, we generated knock-in and transgenic strains in which an EGFP reporter was placed under control of the Supv3L1 native promoter. During development, expression of Supv3L1 begins at the blastocyst stage, becomes widespread and strong in all fetal tissues and cell types, and continues during postnatal growth. In mature animals reporter expression is only slightly diminished in most tissues and continues to be highly expressed in the brain, peripheral sensory organs, and testis. Together, these data confirm that Supv3L1 is an important developmentally regulated gene, which continues to be expressed in all mature tissues, particularly the rapidly proliferating cells of testes, but also in the brain and sensory organs. The transgenic mice and cell lines derived from them constitute a valuable tool for the examination of the spatial and temporal aspects of Supv3L1 promoter activity, and should facilitate future screens for small molecules that regulate Supv3L1 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Adams DJ, Biggs PJ, Cox T, Davies R, van der Weyden L, Jonkers J, Smith J, Plumb B, Taylor R, Nishijima I, Yu Y, Rogers J, Bradley A (2004) Mutagenic insertion and chromosome engineering resource (MICER). Nat Genet 36:867–871

    Article  CAS  PubMed  Google Scholar 

  • Beddington RSP (1992) Transgenic strategies in mouse embryology and development. In: Grosveld FG, Kollias G (eds) Transgenic animals. Academic Press, San Diego, pp 79–98

    Google Scholar 

  • Butow RA, Zhu H, Perlman P, Conrad-Webb H (1989) The role of a conserved dodecamer sequence in yeast mitochondrial gene expression. Genome 31:757–760

    CAS  PubMed  Google Scholar 

  • Conrad-Webb H, Perlman PS, Zhu H, Butow RA (1990) The nuclear SUV3–1 mutation affects a variety of post-transcriptional processes in yeast mitochondria. Nucleic Acids Res 18:1369–1376

    Article  CAS  PubMed  Google Scholar 

  • Dmochowska A, Kalita K, Krawczyk M, Golik P, Mroczek K, Lazowska J, Stepien PP, Bartnik E (1999) A human putative Suv3-like RNA helicase is conserved between Rhodobacter and all eukaryotes. Acta Biochim Pol 46:155–162

    CAS  PubMed  Google Scholar 

  • Dziembowski A, Piwowarski J, Hoser R, Minczuk M, Dmochowska A, Siep M, van der Spek H, Grivell L, Stepien PP (2003) The yeast mitochondrial degradosome. Its composition, interplay between RNA helicase and RNase activities and the role in mitochondrial RNA metabolism. J Biol Chem 278:1603–1611

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D (1989) Transgenic mice as probes into complex systems. Science 246:1265–1275

    Article  CAS  PubMed  Google Scholar 

  • Hoang QV, Linsenmeier RA, Chung CK, Curcio CA (2002) Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation. Vis Neurosci 19:395–407

    Article  CAS  PubMed  Google Scholar 

  • Khanna H, Davis EE, Murga-Zamalloa CA, Estrada-Cuzcano A, Lopez I, den Hollander AI, Zonneveld MN, Othman MI, Waseem N, Chakarova CF, Maubaret C, Diaz-Font A, Macdonald I, Muzny DM, Wheeler DA, Morgan M, Lewis LR, Logan CV, Tan PL, Beer MA, Inglehearn CF, Lewis RA, Jacobson SG, Bergmann C, Beales PL, Attié-Bitach T, Johnson CA, Otto EA, Bhattacharya SS, Hildebrandt F, Gibbs RA, Koenekoop RK, Swaroop A, Katsanis N (2009) A common allele in RPGRIP1L is a modifier of retinal degeneration in ciliopathies. Nat Genet 41:739–745

    Article  CAS  PubMed  Google Scholar 

  • Khidr L, Wu G, Davila A, Procaccio V, Wallace D, Lee WH (2008) Role of SUV3 helicase in maintaining mitochondrial homeostasis in human cells. J Biol Chem 283:27064–27073

    Article  CAS  PubMed  Google Scholar 

  • Klysik J, Singer JD (2005) Mice with the enhanced green fluorescent protein gene knocked into chromosome 11 exhibit normal transmission ratios. Biochem Genet 43:321–333

    Article  CAS  PubMed  Google Scholar 

  • Kollias F, Grosveld FG (1992) Transgenic strategies in mouse embryology and development. In: Grosveld FG, Kollias G (eds) Transgenic animals. Academic Press, San Diego, pp 47–77

    Google Scholar 

  • Liu P, Jenkins NA, Copeland NG (2003) A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res 13:476–484

    Article  CAS  PubMed  Google Scholar 

  • Minczuk M, Piwowarski J, Papworth MA, Awiszus K, Schalinski S, Dziembowski A, Dmochowska A, Bartnik E, Tokatlidis K, Stepien PP, Borowski P (2002) Localisation of the human hSuv3p helicase in the mitochondrial matrix and its preferential unwinding of dsDNA. Nucleic Acids Res 30:5074–5086

    Article  CAS  PubMed  Google Scholar 

  • Minczuk M, Mroczek S, Pawlak SD, Stepien PP (2005) Human ATP-dependent RNA/DNA helicase hSuv3p interacts with the cofactor of survivin HBXIP. Febs J 272:5008–5019

    Article  CAS  PubMed  Google Scholar 

  • Palmiter RD, Brinster RL (1986) Germ-line transformation of mice. Annu Rev Genet 20:465–499

    Article  CAS  PubMed  Google Scholar 

  • Paul E, Cronan R, Weston PJ, Boekelheide K, Sedivy JM, Lee S-Y, Wiest DL, Resnick MB, Klysik JE (2009) Disruption of Supv3L1 damages the skin and causes sarcopenia, loss of fat, and death. Mamm Genome 20:92–108

    Article  PubMed  Google Scholar 

  • Pereira M, Mason P, Szczesny RJ, Maddukuri L, Dziwura S, Jedrzejczak R, Paul E, Wojcik A, Dybczynska L, Tudek B, Bartnik E, Klysik J, Bohr VA, Stepien PP (2007) Interaction of human SUV3 RNA/DNA helicase with BLM helicase: loss of the SUV3 gene results in mouse embryonic lethality. Mech Aging Dev 128:609–617

    Article  CAS  PubMed  Google Scholar 

  • Perkins GA, Ellisman MH, Fox DA (2003) Three-dimensional analysis of mouse rod and cone mitochondrial cristae architecture: bioenergetic and functional implications. Mol Vis 9:60–73

    CAS  PubMed  Google Scholar 

  • Ramirez-Solis R, Liu P, Bradley A (1995) Chromosome engineering in mice. Nature 378:720–724

    Article  CAS  PubMed  Google Scholar 

  • Shu Z, Vijayakumar S, Chen CF, Chen PL, Lee WH (2004) Purified human SUV3p exhibits multiple-substrate unwinding activity upon conformational change. Biochemistry 43:4781–4790

    Article  CAS  PubMed  Google Scholar 

  • Stepien PP, Margossian SP, Landsman D, Butow RA (1992) The yeast nuclear gene suv3 affecting mitochondrial post-transcriptional processes encodes a putative ATP-dependent RNA helicase. Proc Natl Acad Sci USA 89:6813–6817

    Article  CAS  PubMed  Google Scholar 

  • Szczesny RJ, Obriot H, Paczkowska A, Jedrzejczak R, Dmochowska A, Bartnik E, Formstecher P, Polakowska R, Stepien PP (2007) Down-regulation of human RNA/DNA helicase SUV3 induces apoptosis by a caspase- and AIF-dependent pathway. Biol Cell 99:323–332

    Article  CAS  PubMed  Google Scholar 

  • Wang DD-H, Shu Z, Lieser SA, Chen P-L, Lee W-H (2009) Human mitochondrial SUV3 and PNPase form a 330 kDa heteropentamer to cooperatively degrade dsRNA with 3′-to-5′ directionality. J Biol Chem. doi:10.1074/jbc.M109.009605

  • Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG (2005) Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 33:e36

    Article  PubMed  Google Scholar 

  • Young RW (1976) Visual cells and the concept of renewal. Invest Ophthalmol Vis Sci 15:700–725

    CAS  PubMed  Google Scholar 

  • Yu DY, Cringle SJ (2001) Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog Retin Eye Res 20:175–208

    Article  CAS  PubMed  Google Scholar 

  • Yu DY, Cringle SJ (2005) Retinal degeneration and local oxygen metabolism. Exp Eye Res 80:745–751

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Conrad-Webb H, Liao XS, Perlman PS, Butow RA (1989) Functional expression of a yeast mitochondrial intron-encoded protein requires RNA processing at a conserved dodecamer sequence at the 3′ end of the gene. Mol Cell Biol 9:1507–1512

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by grants 5P20RR015578-07 and EY007961 from the National Institute of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan E. Klysik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, E., Kielbasinski, M., Sedivy, J.M. et al. Widespread expression of the Supv3L1 mitochondrial RNA helicase in the mouse. Transgenic Res 19, 691–701 (2010). https://doi.org/10.1007/s11248-009-9346-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-009-9346-0

Keywords

Navigation