Skip to main content
Log in

Analyzing notochord segmentation and intervertebral disc formation using the twhh:gfp transgenic zebrafish model

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

To characterize the process of vertebral segmentation and disc formation in living animals, we analyzed tiggy-winkle hedgehog (twhh):green fluorescent protein (gfp) and sonic hedgehog (shh):gfp transgenic zebrafish models that display notochord-specific GFP expression. We found that they showed distinct patterns of expression in the intervertebral discs of late stage fish larvae and adult zebrafish. A segmented pattern of GFP expression was detected in the intervertebral disc of twhh:gfp transgenic fish. In contrast, little GFP expression was found in the intervertebral disc of shh:gfp transgenic fish. Treating twhh:gfp transgenic zebrafish larvae with exogenous retinoic acid (RA), a teratogenic factor on normal development, resulted in disruption of notochord segmentation and formation of oversized vertebrae. Histological analysis revealed that the oversized vertebrae are likely due to vertebral fusion. These studies demonstrate that the twhh:gfp transgenic zebrafish is a useful model for studying vertebral segmentation and disc formation, and moreover, that RA signaling may play a role in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aguiar DJ, Johnson SL, Oegema TR (1999) Notochordal cells interact with nucleus pulposus cells: regulation of proteoglycan synthesis. Exp Cell Res 246:129–137. doi:10.1006/excr.1998.4287

    Article  PubMed  CAS  Google Scholar 

  • Aszodi A, Cvhan D, Hunziker E, Bateman JF, Fassler R (1998) Collagen II is essential for the removal of the notochord and the formation of intervertebral discs. J Cell Biol 143:1399–1412. doi:10.1083/jcb.143.5.1399

    Article  PubMed  CAS  Google Scholar 

  • Barbieri O, Astigiano S, Morini M, Tavella S, Schito A, Corsi A, Di Martino D, Bianco P, Cancedda R, Garofalo S (2003) Depletion of cartilage collagen fibrils in mice carrying a dominant negative Col2a1 transgene affects chondrocyte differentiation. Am J Physiol Cell Physiol 285:C1504–C1512

    PubMed  CAS  Google Scholar 

  • Bird NC, Mabee PM (2003) Developmental morphology of the axial skeleton of the zebrafish, Danio rerio (Ostariophysi: Cyprinidae). Dev Dyn 228:337–357. doi:10.1002/dvdy.10387

    Article  PubMed  Google Scholar 

  • Brown CL, Nunez JM (1998) Disorders of development. In: Letherland JF, Woo PTK (eds) Fish diseases and disorders, vol 2. Non-infectious disorders. CABI publishing, New York, pp 1–17

    Google Scholar 

  • Bundy J, Rogers R, Hoffman S, Conway SJ (1998) Segmental expression of aggrecan in the non-segmented perinotochordal sheath underlies normal segmentation of the vertebral column. Mech Dev 79:213–217. doi:10.1016/S0925-4773(98)00179-8

    Article  PubMed  CAS  Google Scholar 

  • Butler WF (1989) Comparative anatomy and development of the mammalian disc. In: Ghosh P (ed) The biology of the intervertebral disc. CRC Press, Boca Raton, pp 84–108

    Google Scholar 

  • Christ B, Huang R, Wilting J (2000) The development of the avian vertebral column. Anat Embryol (Berl) 202:179–194. doi:10.1007/s004290000114

    Article  CAS  Google Scholar 

  • Dedi J, Takeuchi T, Seikai T, Watanabe T (1995) Hypervitaminosis and safe levels of vitamin A for larval flounder (Paralichthys olivaceus) fed Artemia nauplii. Aquaculture 133:135–146. doi:10.1016/0044-8486(95)00015-T

    Article  Google Scholar 

  • Dedi J, Takeuchi T, Seikai T, Watanabe T, Hosoya K (1997) Hypervitaminosis A during vertebral morphogenesis in larval Japanese flounder. Fish Sci 63:466–473

    CAS  Google Scholar 

  • DiPaola CP, Farmer JC, Manova K, Niswander LA (2005) Molecular signaling in intervertebral disk development. J Orthop Res 23:1112–1119. doi:10.1016/j.orthres.2005.03.008

    Article  PubMed  CAS  Google Scholar 

  • Du SJ, Dienhart M (2001) Zebrafish twiggy-winkle hedgehog promoter directs notochord and floor plate green fluorescence protein expression in transgenic zebrafish embryos. Dev Dyn 222:655–666. doi:10.1002/dvdy.1219

    Article  PubMed  CAS  Google Scholar 

  • Du SJ, Haga Y (2004) The zebrafish as a model for studying skeletal development. In: Baeuerlein E (ed) Biomineralization: progress in biology, molecular biology and application, 2nd edn. Wiley-VCH, Weinheim, pp 283–304

    Google Scholar 

  • Du SJ, Frenkel V, Kindschi G, Zohar Y (2001) Visualizing normal and defective bone development in zebrafish embryos using the fluorescent chromophore calcein. Dev Biol 238:239–246. doi:10.1006/dbio.2001.0390

    Article  PubMed  CAS  Google Scholar 

  • Ekker SC, Ungar AR, Greenstein P, von Kessler DP, Porter JA, Moon RT, Beachy PA (1995) Patterning activities of vertebrate hedgehog proteins in the developing eye and brain. Curr Biol 5:944–955. doi:10.1016/S0960-9822(95)00185-0

    Article  PubMed  CAS  Google Scholar 

  • Ertzer R, Muller F, Hadzhiev Y, Rathnam S, Fischer N, Rastegar S, Strahle U (2007) Cooperation of sonic hedgehog enhancers in midline expression. Dev Biol 301(2):578–589. doi:10.1016/j.ydbio.2006.11.004

    Article  PubMed  CAS  Google Scholar 

  • Erwin WM, Inman RD (2006) Notochord cells regulate intervertebral disc chondrocyte proteoglycan production and cell proliferation. Spine 31:1094–1099. doi:10.1097/01.brs.0000216593.97157.dd

    Article  PubMed  Google Scholar 

  • Fleming A, Keynes R, Tannahill D (2004) A central role for the notochord in vertebral patterning. Development 131:873–880. doi:10.1242/dev.00952

    Article  PubMed  CAS  Google Scholar 

  • Grotmol S, Kryvi H, Nordvik K, Totland GK (2003) Notochord segmentation may lay down the pathway for the development of the vertebral bodies in the Atlantic salmon. Anat Embryol (Berl) 207:263–272. doi:10.1007/s00429-003-0349-y

    Article  Google Scholar 

  • Grotmol S, Nordvik K, Kryvi H, Totland GK (2005) A segmental pattern of alkaline phosphatase activity within the notochord coincides with the initial formation of the vertebral bodies. J Anat 206:427–436. doi:10.1111/j.1469-7580.2005.00408.x

    Article  PubMed  CAS  Google Scholar 

  • Haga Y, Takeuchi T, Seikai T (1999) Effect of retinoic acid on larval Japanese flounder, Paralichthys oliveceus, reared on Artemia nauplii. Aquac Sci 47:559–566

    CAS  Google Scholar 

  • Haga Y, Suzuki T, Takeuchi T (2002) Retinoic acid isomers produce malformations in postembryonic development of the Japanese flounder, Paralichthys olivaceus. Zoolog Sci 19:1105–1112. doi:10.2108/zsj.19.1105

    Article  PubMed  CAS  Google Scholar 

  • Hunter CJ, Matyas JR, Duncan NA (2003) The three-dimensional architecture of the notochordal nucleus pulposus: novel observations on cell structures in the canine intervertebral disc. J Anat 202:279–291

    PubMed  Google Scholar 

  • Inohaya K, Takano Y, Kudo A (2007) The teleost intervertebral region acts as a growth center of the centrum: in vivo visualization of osteoblasts and their progenitors in transgenic fish. Dev Dyn 236:3031–3046. doi:10.1002/dvdy.21329

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto M, Shapiro IM, Yagami K, Boskey AL, Leboy PS, Adams SL, Pacifici M (1993) Retinoic acid induces rapid mineralization and expression of mineralization-related genes in chondrocytes. Exp Cell Res 207:413–420. doi:10.1006/excr.1993.1209

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto M, Yagami K, Shapiro IM, Leboy PS, Adams SL, Pacifici M (1994) Retinoic acid is a major regulator of chondrocyte maturation and matrix mineralization. Microsc Res Tech 28:483–491. doi:10.1002/jemt.1070280604

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto M, Kitagaki J, Tamamura Y, Gentili C, Koyama E, Enomoto H, Komori T, Pacifici M, Enomoto-Iwamoto M (2003) Runx2 expression and action in chondrocytes are regulated by retinoid signaling and parathyroid hormone-related peptide (PTHrP). Osteoarthritis Cartilage 11:6–15. doi:10.1053/joca.2002.0860

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki M, Jikko A, Le AX (1999) Age-dependent effects of hedgehog protein on chondrocytes. J Bone Joint Surg Br 81:1076–1082. doi:10.1302/0301-620X.81B6.8851

    Article  PubMed  CAS  Google Scholar 

  • Javidan Y, Schilling TF (2004) Development of cartilage and bone. Methods Cell Biol 76:415–436. doi:10.1016/S0091-679X(04)76018-5

    Article  PubMed  Google Scholar 

  • Karp SJ, Schipani E, St-Jacques B, Hunzelman J, Kronenberg H, McMahon AP (2000) Indian hedgehog coordinates endochondral bone growth and morphogenesis via parathyroid hormone related-protein-dependent and -independent pathways. Development 127:543–548

    PubMed  CAS  Google Scholar 

  • Kawamura K, Hosoya K (1991) A modified double staining technique for making a transparent fish-skeletal specimen. Bull Natl Res Inst Aquac 20:11–18

    Google Scholar 

  • Kessel M, Gruss P (1991) Homeotic transformations of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid. Cell 67:89–104. doi:10.1016/0092-8674(91)90574-I

    Article  PubMed  CAS  Google Scholar 

  • Laue K, Jänicke M, Plaster N, Sonntag C, Hammerschmidt M (2008) Restriction of retinoic acid activity by Cyp26b1 is required for proper timing and patterning of osteogenesis during zebrafish development. Development 135:3775–3787. doi:10.1242/dev.021238

    Article  PubMed  CAS  Google Scholar 

  • Linsenmayer TF, Gibney E, Schmid TM (1986) Segmental appearance of type X collagen in the developing avian notochord. Dev Biol 113:467–473. doi:10.1016/0012-1606(86)90182-X

    Article  PubMed  CAS  Google Scholar 

  • Lohnes D, Mark M, Mendelsohn C, Dolle P, Dierich A, Gorry P, Gansmuller A, Chambon P (1994) Function of the retinoic acid receptors (RARs) during development (I). Craniofacial and skeletal abnormalities in RAR double mutants. Development 120:2723–2748

    CAS  Google Scholar 

  • Maeda Y, Nakamura E, Nguyen MT, Suva LJ, Swain FL, Razzaque MS, Mackem S, Lanske B (2007) Indian Hedgehog produced by postnatal chondrocytes is essential for maintaining a growth plate and trabecular bone. Proc Natl Acad Sci USA 104:6382–6387. doi:10.1073/pnas.0608449104

    Article  PubMed  CAS  Google Scholar 

  • Pease CN (1962) Focal retardation and arrestment of growth of bones due to vitamin A intoxication. JAMA 182:980–985

    PubMed  CAS  Google Scholar 

  • Piotrowski T, Schilling TF, Brand M, Jiang YJ, Heisenberg CP, Beuchle D, Grandel H, van Eeden FJ, Furutani-Seiki M, Granato M, Haffter P, Hammerschmidt M, Kane DA, Kelsh RN, Mullins MC, Odenthal J, Warga RM, Nusslein-Volhard C (1996) Jaw and branchial arch mutants in zebrafish II: anterior arches and cartilage differentiation. Development 123:345–356

    PubMed  CAS  Google Scholar 

  • Razzaque MS, Soegiarto DW, Chang D, Long F, Lanske B (2005) Conditional deletion of Indian hedgehog from collagen type 21-expressing cells results in abnormal endochondral bone formation. J Pathol 207:453–461. doi:10.1002/path.1870

    Article  PubMed  CAS  Google Scholar 

  • Rufai A, Benjamin M, Ralphs JR (1995) The development of fibrocartilage in the rat intervertebral disc. Anat Embryol (Berl) 192:53–62. doi:10.1007/BF00186991

    CAS  Google Scholar 

  • Santamaria JA, Andrez JA, Herraez P, Fernandez-Llebrez P (1994) Perinotochordal connective sheet of gilthead sea bream larvae (Sparus aurata, L.) affected by axial malformations: an histochemical and immunocytochemical study. Anat Rec 240:248–254. doi:10.1002/ar.1092400212

    Article  PubMed  CAS  Google Scholar 

  • Schilling TF, Piotrowski T, Grandel H, Brand M, Heisenberg CP, Jiang YJ, Beuchle D, Hammerschmidt M, Kane DA, Mullins MC, van Eeden FJ, Kelsh RN, Furutani-Seiki M, Granato M, Haffter P, Odenthal J, Warga RM, Trowe T, Nusslein-Volhard C (1996) Jaw and branchial arch mutants in zebrafish I: branchial arches. Development 123:329–344

    PubMed  CAS  Google Scholar 

  • Shkumatava A, Fischer S, Müller F, Strähle U, Neumann CJ (2004) Sonic hedgehog, secreted by amacrine cells, acts as a short-range signal to direct differentiation and lamination in the zebrafish retina. Development 131:3849–3858. doi:10.1242/dev.01247

    Article  PubMed  CAS  Google Scholar 

  • Smith P, Lefebvre V (2003) Sox5 and Sox6 are required for notochord extracellular matrix sheath formation, notochord cell survival and development of the nucleus pulposus of intervertebral discs. Development 130:1135–1148. doi:10.1242/dev.00331

    Article  Google Scholar 

  • Spoorendonk KM, Peterson-Maduro J, Renn J, Trowe T, Kranenbarg S, Winkler C, Schulte-Merker S (2008) Retinoic acid and Cyp26b1 are critical regulators of osteogenesis in the axial skeleton. Development 135:3765–3774. doi:10.1242/dev.024034

    Article  PubMed  CAS  Google Scholar 

  • Stemple DL (2005) Structure and function of the notochord: an essential organ for chordate development. Development 132:2503–2512. doi:10.1242/dev.01812

    Article  PubMed  CAS  Google Scholar 

  • St-Jacques B, Hammerschmidt M, McMahon AP (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 13:2072–2086. doi:10.1101/gad.13.16.2072

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi T, Dedi J, Haga Y, Seikai T, Watanabe T (1998) Effect of vitamin A compounds on bone deformity in larval Japanese flounder (Paralichthys olivaceus). Aquaculture 169:155–166. doi:10.1016/S0044-8486(98)00373-1

    Article  CAS  Google Scholar 

  • Urban JPG, Roberts S, Ralphs JR (2000) The nucleus of the intervertebral disc from development to degeneration. Am Zool 40:53–61. doi:10.1668/0003-1569(2000)040[0053:TNOTID]2.0.CO;2

    Article  Google Scholar 

  • Walmsley R (1953) The development and growth of the intervertebral disc. Edinburgh Med J 60:341–364

    CAS  Google Scholar 

  • Wang W, Kirsch T (2002) Retinoic acid stimulates annexin-mediated growth plate chondrocyte mineralization. J Cell Biol 157:1061–1069. doi:10.1083/jcb.200203014

    Article  PubMed  CAS  Google Scholar 

  • Whyte MP (2002) Hypophosphatasia: nature’s window on alkaline phosphatase function in man. In: Biezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology, vol 2, 2nd edn. Academic Press, London, pp 1220–1249

    Google Scholar 

  • Wiley MJ (1983) The pathogenesis of retinoic acid-induced vertebral abnormalities in golden Syrian hamster fetuses. Teratology 28:341–353. doi:10.1002/tera.1420280306

    Article  PubMed  CAS  Google Scholar 

  • Wu LN, Ishikawa Y, Nie D, Genge BR, Wuthier RE (1997) Retinoic acid stimulates matrix calcification and initiates type I collagen synthesis in primary cultures of avian weight-bearing growth plate chondrocytes. J Cell Biochem 65:209–230. doi:10.1002/(SICI)1097-4644(199705)65:2<209::AID-JCB7>3.0.CO;2-Y

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank John Stubblefield and Rebecca Petre Sullivan for editing. This work was supported by a grant from National Institutes of Health (RO1GM58537) to S. J. D. Vincent J. Dominique III was supported as a summer student intern by the NOAA-EPP funded LMRCSC program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao Jun Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haga, Y., Dominique, V.J. & Du, S.J. Analyzing notochord segmentation and intervertebral disc formation using the twhh:gfp transgenic zebrafish model. Transgenic Res 18, 669–683 (2009). https://doi.org/10.1007/s11248-009-9259-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-009-9259-y

Keywords

Navigation