Skip to main content
Log in

Lactation performance of transgenic goats expressing recombinant human butyryl-cholinesterase in the milk

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The production of recombinant proteins in the milk of transgenic animals has attracted significant interest in the last decade, as a valuable alternative for the production of recombinant proteins that cannot be or are inefficiently produced using conventional systems based on microorganisms or animal cells. Several recombinant proteins of pharmaceutical and biomedical interest have been successfully expressed in high quantities (g/l) in the milk of transgenic animals. However, this productivity may be associated with a compromised mammary physiology resulting, among other things, from the extraordinary demand placed on the mammary secretory cells. In this study we evaluated the lactation performance of a herd of 50 transgenic goats expressing recombinant human butyryl-cholinesterase (rBChE) in the milk. Our findings indicate that high expression levels of rBChE (range 1–5 g/l) are produced in these animals at the expense of an impaired lactation performance. The key features characterizing these transgenic performances were the decreased milk production, the reduced milk fat content which was associated with an apparent disruption in the lipid secretory mechanism at the mammary epithelium level, and a highly increased presence of leukocytes in milk which is not associated with mammary infection. Despite of having a compromised lactation performance, the amount of rBChE produced per transgenic goat represents several orders of magnitude more than the amount of rBChE present in the blood of hundreds of human donors, the only other available source of rBChE for pharmaceutical and biodefense applications. As a result, this development constitutes another successful example in the application of transgenic animal technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baldassarre H, Karatzas CN (2004) Advanced assisted reproduction technologies (ART) in goats. Anim Reprod Sci 82–83:255–266

    Article  PubMed  Google Scholar 

  • Baldassarre H, Wang B, Keefer CL, Lazaris A, Karatzas CN (2004) State of the art in the production of transgenic goats. Reprod Fertil Dev 16:465–470

    Article  PubMed  CAS  Google Scholar 

  • Behboodi E, Ayres SL, Memili E, O’Coin M, Chen LH, Reggio BC, Landry AM, Gavin WG, Meade HM, Godke RA, Echelard Y (2005) Health and reproductive profiles of malaria antigen-producing transgenic goats derived by somatic cell nuclear transfer. Cloning Stem Cells 7:107–118

    Article  PubMed  CAS  Google Scholar 

  • Bodrogi L, Brands R, Raaben W, Seinen W, Baranyi M, Fiechter D, Bosze Z (2006) High level expression of tissue-nonspecific alkaline phosphatase in the milk of transgenic rabbits. Transgenic Res 15:627–636

    Article  PubMed  CAS  Google Scholar 

  • Brophy B, Smolenski G, Wheeler T, Wells D, L’Huillier P, Laible G (2003) Cloned transgenic cattle produce milk with higher levels of beta-casein and kappa-casein. Nat Biotechnol 21:157–162

    Article  PubMed  CAS  Google Scholar 

  • Capuco AV, Akers RM (1999) Mammary involution in dairy animals. J Mammary Gland Biol Neoplasia 4:137–144

    Article  PubMed  CAS  Google Scholar 

  • Cerasoli DM, Griffiths EM, Doctor, BP, Saxena A, Fedorko JM, Greig NH, Yu QS, Huang Y, Wilgus H, Karatzas CN, Koplovitz I, Lenz DE (2005) In vitro and in vivo characterization of recombinant human butyrylcholinesterase (Protexia) as a potential nerve agent bioscavenger. Chem Biol Interact 157–158:363–365

    PubMed  Google Scholar 

  • Denman J, Hayes M, O’Day C, Edmunds T, Bartlett C, Hirani S, Ebert KM, Gordon K, McPherson JM (1991) Transgenic expression of a variant of human tissue-type plasminogen activator in goat milk: purification and characterization of the recombinant enzyme. Biotechnology (NY) 9:839–843

    Article  CAS  Google Scholar 

  • Doctor, BP, Saxena A (2005) Bioscavengers for the protection of humans against organophosphate toxicity. Chem Biol Interact 157–158:167–171

    Article  PubMed  CAS  Google Scholar 

  • Ebert KM, DiTullio P, Barry CA, Schindler JE, Ayres SL, Smith TE, Pellerin LJ, Meade HM, Denman J, Roberts B (1994) Induction of human tissue plasminogen activator in the mammary gland of transgenic goats. Biotechnology (N Y ) 12:699–702

    Article  CAS  Google Scholar 

  • Echelard Y, Destrempes MM, Koster JA, Blackwell C, Groen W, Pollock D, Williams JL, Behboodi E, Pommer J, Meade HM (2002) Production of recombinant human serum albumin in the milk of transgenic cows. Theriogenology 57:779

    Google Scholar 

  • Eichner W, Sommermeyer K (1999) Large scale production of RH-albumin expressed in the milk of transgenic cattle–an economic and technical challenge. Anasthesiol Intensivmed Notfallmed Schmerzther 34:777–778

    PubMed  CAS  Google Scholar 

  • Ellman GC, Courtney KP, Andres V Jr, Featherstone RM (1961) A new rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  • Evans G, Maxwell WM (1987) Salamon’s artificial insemination of sheep and goats. Butterworths, Sydney, Australia

    Google Scholar 

  • Houdebine LM (2000) Transgenic animal bioreactors. Transgenic Res 9:305–320

    Article  PubMed  CAS  Google Scholar 

  • Hyvonen P, Suojala L, Haaranen J, von, WA, Pyorala S (2006) Human and bovine lactoferrins in the milk of recombinant human lactoferrin-transgenic dairy cows during lactation. Biotechnol J 1:410–412

    Article  PubMed  CAS  Google Scholar 

  • Huang YJ, Huang Y, Baldassarre H, Wang B, Lazaris A, Leduc M, Bilodeau AS, Bellemare A, Cote M, Herskovits P, Touati M, Turcotte C, Valeanu L, Lemee N, Wilgus H, Begin I, Bhatia B, Rao K, Neveu N, Brochu E, Pierson J, Hockley DK, Cerasoli DM, Lenz, DE, Karatzas CN, Langermann S (2007) Recombinant human butyrylcholinesterase from milk of transgenic animals to protect against organophosphate poisoning. Proc Natl Acad Sci USA 104:13603--13608

    Google Scholar 

  • Jones ML (2002) Lipids. In: Bancroft JD, Gamble M (eds) Theory and practice of histological techniques. Churchill Livingston, Philadelphia, pp 201–230

    Google Scholar 

  • Karatzas CN, Zhou FJ, Huang Y, Duguay F, Chretien N, Bhatia B, Bilodeau AS, Keyston R, Tao T, Keefer CL, Wang B, Baldassarre H, Lazaris A (1999) Production of recombinant spider silk (BioSteel®) in the milk of transgenic animals. Transgenic Res 8:476–477

    Google Scholar 

  • Keefer CL (2004) Production of bioproducts through the use of transgenic animal models. Anim Reprod Sci 82–83:5–12

    Article  PubMed  CAS  Google Scholar 

  • Ko JH, Lee CS, Kim KH, Pang MG, Koo JS, Fang N, Koo DB, Oh KB, Youn WS, Zheng GD, Park JS, Kim SJ, Han YM, Choi IY, Lim J, Shin ST, Jin SW, Lee KK, Yoo OJ (2000) Production of biologically active human granulocyte colony stimulating factor in the milk of transgenic goat. Transgenic Res 9:215–222

    Article  PubMed  CAS  Google Scholar 

  • Maga EA, Shoemaker CF, Rowe JD, Bondurant RH, Anderson GB, Murray JD (2006) Production and processing of milk from transgenic goats expressing human lysozyme in the mammary gland. J Dairy Sci 89:518–524

    Article  PubMed  CAS  Google Scholar 

  • Mather IH, Keenan TW (1998) Origin and secretion of milk lipids. J Mammary Gland Biol Neoplasia 3:259–273

    Article  PubMed  CAS  Google Scholar 

  • Niemann H, Halter R, Carnwath JW, Herrmann D, Lemme E, Paul D (1999) Expression of human blood clotting factor VIII in the mammary gland of transgenic sheep. Transgenic Res 8:237–247

    Article  PubMed  CAS  Google Scholar 

  • Ogg SL, Weldon AK, Dobbie L, Smith AJ, Mather IH (2004) Expression of butyrophilin (Btn1a1) in lactating mammary gland is essential for the regulated secretion of milk-lipid droplets. Proc Natl Acad Sci U S A 101:10084–10089

    Article  PubMed  CAS  Google Scholar 

  • Palmer CA, Lubon H, McManaman JL (2003) Transgenic mice expressing recombinant human protein C exhibit defects in lactation and impaired mammary gland development. Transgenic Res 12:283–292

    Article  PubMed  CAS  Google Scholar 

  • Parker MH, Birck-Wilson E, Allard G, Masiello N, Day M, Murphy KP, Paragas V, Silver S, Moody MD (2004) Purification and characterization of a recombinant version of human alpha-fetoprotein expressed in the milk of transgenic goats. Protein Expr Purif 38:177–183

    Article  PubMed  CAS  Google Scholar 

  • Pollock DP, Kutzko JP, Birck-Wilson E, Williams JL, Echelard Y, Meade HM (1999) Transgenic milk as a method for the production of recombinant antibodies. J Immunol Methods 231:147–157

    Article  PubMed  CAS  Google Scholar 

  • Prunkard D, Cottingham I, Garner I, Bruce S, Dalrymple M, Lasser G, Bishop P, Foster D (1996) High-level expression of recombinant human fibrinogen in the milk of transgenic mice. Nat Biotechnol 14:867–871

    Article  PubMed  CAS  Google Scholar 

  • Pursel VG, Wall RJ, Solomon MB, Bolt DJ, Murray JE, Ward KA (1997) Transfer of an ovine metallothionein-ovine growth hormone fusion gene into swine. J Anim Sci 75:2208–2214

    PubMed  CAS  Google Scholar 

  • Rainard P (2003) The complement in milk and defense of the bovine mammary gland against infections. Vet Res 34:647–670

    Article  PubMed  CAS  Google Scholar 

  • Salamone D, Baranao L, Santos C, Bussmann L, Artuso J, Werning C, Prync A, Carbonetto C, Dabsys S, Munar C, Salaberry R, Berra G, Berra I, Fernandez N, Papouchado M, Foti M, Judewicz N, Mujica I, Munoz L, Alvarez SF, Gonzalez E, Zimmermann J, Criscuolo M, Melo C (2006) High level expression of bioactive recombinant human growth hormone in the milk of a cloned transgenic cow. J Biotechnol 124:469–472

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schnieke AE, Kind AJ, Ritchie WA, Mycock K, Scott AR, Ritchie M, Wilmut I, Colman A, Campbell KH (1997) Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278:2130–2133

    Article  PubMed  CAS  Google Scholar 

  • Vorbach C, Scriven A, Capecchi MR (2002) The housekeeping gene xanthine oxidoreductase is necessary for milk fat droplet enveloping and secretion: gene sharing in the lactating mammary gland. Genes Dev 16:3223–3235

    Article  PubMed  CAS  Google Scholar 

  • Wall RJ, Kerr DE, Bondioli KR (1997) Transgenic dairy cattle: genetic engineering on a large scale. J Dairy Sci 80:2213–2224

    PubMed  CAS  Google Scholar 

  • Wall RJ, Powell AM, Paape MJ, Kerr DE, Bannerman DD, Pursel VG, Wells KD, Talbot N, Hawk HW (2005) Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat Biotechnol 23:445–451

    Article  PubMed  CAS  Google Scholar 

  • Weng MH, Chang CJ, Chen WY, Chou WK, Peh HC, Huang MC, Chen MT, Nagahata H (2006) Contribution of somatic cell-associated activation of plasminogen to caseinolysis within the goat mammary gland. J Dairy Sci 89:2025–2037

    PubMed  CAS  Google Scholar 

  • Wheeler MB (2003) Production of transgenic livestock: promise fulfilled. J Anim Sci 81(Suppl 3):32–37

    PubMed  CAS  Google Scholar 

  • Wheeler MB, Walters EM, Clark SG (2003) Transgenic animals in biomedicine and agriculture: outlook for the future. Anim Reprod Sci 79:265–289

    Article  PubMed  CAS  Google Scholar 

  • Young MW, Meade H, Curling JM, Ziomek CA, Harvey M (1998) Production of recombinant antibodies in the milk of transgenic animals. Res Immunol 149:609–610

    Article  PubMed  CAS  Google Scholar 

  • Zhang RH, Mustafa AF, Ng-Kwai-Hang KF, Zhao X (2006) Effects of freezing on composition and fatty acid profiles of sheep milk and cheese. Small Ruminant Research 64:203–210

    Article  Google Scholar 

  • Zhou Q, Kyazike J, Echelard Y, Meade HM, Higgins E, Cole ES, Edmunds T (2005) Effect of genetic background on glycosylation heterogeneity in human antithrombin produced in the mammary gland of transgenic goats. J Biotechnol 117:57–72

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernan Baldassarre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldassarre, H., Hockley, D.K., Doré, M. et al. Lactation performance of transgenic goats expressing recombinant human butyryl-cholinesterase in the milk. Transgenic Res 17, 73–84 (2008). https://doi.org/10.1007/s11248-007-9137-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-007-9137-4

Keywords

Navigation