Skip to main content

Advertisement

Log in

Germ line transmission and expression of an RNAi cassette in mice generated by a lentiviral vector system

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

We have used a lentiviral delivery system (LentiLox3.7) to generate transgenic mice harbouring RNA interference (RNAi) against the hepatocyte nuclear factor 4 gamma (HNF4γ). HNF4γ is a nuclear receptor with unknown function. Our analyses performed on founder (F0) and first generation (F1) mice revealed mosaicism in F0 founders and a low efficiency of transgenesis (6%) in F1 mice. These data, together with the observation of multiple silenced transgenes, do not favour the use of LentiLox3.7 lentivirus for transgenesis. Despite the low efficiency of transgenesis, we achieved a tissue-dependent knockdown of HNF4γ expression in some mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Boj SF, Parrizas M, Maestro MA, Ferrer J (2001) A transcription factor regulatory circuit in differentiated pancreatic cells. Proc Natl Acad Sci USA 98:14481–14486

    Article  CAS  PubMed  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R (2002) Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2:243–247

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Chan CY, Lawrence CE (2004) Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res 32:W135–W141

    Article  CAS  PubMed  Google Scholar 

  • Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200

    Article  CAS  PubMed  Google Scholar 

  • Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, Marion P, Salazar F, Kay MA (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441:537–541

    Article  CAS  PubMed  Google Scholar 

  • Gupta RK, Vatamaniuk MZ, Lee CS, Flaschen RC, Fulmer JT, Matschinsky FM, Duncan SA, Kaestner KH (2005) The MODY1 gene HNF-4alpha regulates selected genes involved in insulin secretion. J Clin Invest 115:1006–1015

    Article  CAS  PubMed  Google Scholar 

  • Hamra FK, Gatlin J, Chapman KM, Grellhesl DM, Garcia JV, Hammer RE, Garbers DL (2002) Production of transgenic rats by lentiviral transduction of male germ-line stem cells. Proc Natl Acad Sci USA 99:14931–14936

    Article  CAS  PubMed  Google Scholar 

  • Hofmann A, Kessler B, Ewerling S, Weppert M, Vogg B, Ludwig H, Stojkovic M, Boelhauve M, Brem G, Wolf E, Pfeifer A (2003) Efficient transgenesis in farm animals by lentiviral vectors. EMBO Rep 4:1054–1060

    Article  CAS  PubMed  Google Scholar 

  • Hofmann A, Zakhartchenko V, Weppert M, Sebald H, Wenigerkind H, Brem G, Wolf E, Pfeifer A (2004) Generation of transgenic cattle by lentiviral gene transfer into oocytes. Biol Reprod 71:405–409

    Article  CAS  PubMed  Google Scholar 

  • Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Behlke MA, Rose SD, Chang MS, Choi S, Rossi JJ (2005) Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 23:222–226

    Article  CAS  PubMed  Google Scholar 

  • Lee NS, Dohjima T, Bauer G, Li H, Li MJ, Ehsani A, Salvaterra P, Rossi J (2002) Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 20:500–505

    CAS  PubMed  Google Scholar 

  • Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295:868–872

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Yamamoto V, Ortega B, Baltimore D (2004) Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell 119:97–108

    Article  CAS  PubMed  Google Scholar 

  • McGrew MJ, Sherman A, Ellard FM, Lillico SG, Gilhooley HJ, Kingsman AJ, Mitrophanous KA, Sang H (2004) Efficient production of germline transgenic chickens using lentiviral vectors. EMBO Rep 5:728–733

    Article  CAS  PubMed  Google Scholar 

  • McManus MT, Petersen CP, Haines BB, Chen J, Sharp PA (2002) Gene silencing using micro-RNA designed hairpins. Rna 8:842–850

    Article  CAS  PubMed  Google Scholar 

  • Mitchell RS, Beitzel BF, Schroder AR, Shinn P, Chen H, Berry CC, Ecker JR, Bushman FD (2004) Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2:E234

    Article  PubMed  Google Scholar 

  • Miyagishi M, Taira K (2002) U6 promoter-driven siRNAs with four uridine 3’ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol 20:497–500

    Article  CAS  PubMed  Google Scholar 

  • O’Rourke JR, Swanson MS, Harfe BD (2006) MicroRNAs in mammalian development and tumorigenesis. Birth Defects Res C Embryo Today 78:172–179

    Article  CAS  PubMed  Google Scholar 

  • Paddison PJ, Caudy AA, Sachidanandam R, Hannon GJ (2004) Short hairpin activated gene silencing in mammalian cells. Methods Mol Biol 265:85–100

    CAS  PubMed  Google Scholar 

  • Paul CP, Good PD, Winer I, Engelke DR (2002) Effective expression of small interfering RNA in human cells. Nat Biotechnol 20:505–508

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer A, Ikawa M, Dayn Y, Verma IM (2002) Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proc Natl Acad Sci USA 99:2140–2145

    Article  CAS  PubMed  Google Scholar 

  • Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22:326–330

    Article  CAS  PubMed  Google Scholar 

  • Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J, Rooney DL, Ihrig MM, McManus MT, Gertler FB, Scott ML, Van Parijs L (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33:401–406

    Article  CAS  PubMed  Google Scholar 

  • Sauvaget D, Chauffeton V, Citadelle D, Chatelet FP, Cywiner-Golenzer C, Chambaz J, Pincon-Raymond M, Cardot P, Le Beyec J, Ribeiro A (2002) Restriction of apolipoprotein A-IV gene expression to the intestine villus depends on a hormone-responsive element and parallels differential expression of the hepatic nuclear factor 4alpha and gamma isoforms. J Biol Chem 277:34540–34548

    Article  CAS  PubMed  Google Scholar 

  • Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    Article  CAS  PubMed  Google Scholar 

  • Silva JM, Sachidanandam R, Hannon GJ (2003) Free energy lights the path toward more effective RNAi. Nat Genet 35:303–305

    Article  CAS  PubMed  Google Scholar 

  • Siolas D, Lerner C, Burchard J, Ge W, Linsley PS, Paddison PJ, Hannon GJ, Cleary MA (2005) Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol 23:227–231

    Article  CAS  PubMed  Google Scholar 

  • Sladek F (2002) Desperately seeking something. Mol Cell 10:219–221

    Article  CAS  PubMed  Google Scholar 

  • Sui G, Soohoo C, Affarel B, Gay F, Shi Y, Forrester WC, Shi Y (2002) A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci USA 99:5515–5520

    Article  CAS  PubMed  Google Scholar 

  • Taraviras S, Mantamadiotis T, Dong-Si T, Mincheva A, Lichter P, Drewes T, Ryffel GU, Monaghan AP, Schutz G (2000) Primary structure, chromosomal mapping, expression and transcriptional activity of murine hepatocyte nuclear factor 4gamma. Biochim Biophys Acta 1490:21–32

    CAS  PubMed  Google Scholar 

  • Tijsterman M, Ketting RF, Plasterk RH (2002) The genetics of RNA silencing. Annu Rev Genet 36:489–519

    Article  CAS  PubMed  Google Scholar 

  • Tomari Y, Zamore PD (2005) Perspective: machines for RNAi. Genes Dev 19:517–529

    Article  CAS  PubMed  Google Scholar 

  • Ui-Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki-Hamazaki H, Juni A, Ueda R, Saigo K (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 32:936–948

    Article  CAS  PubMed  Google Scholar 

  • van den Brandt J, Wang D, Kwon SH, Heinkelein M, Reichardt HM (2004) Lentivirally generated eGFP-transgenic rats allow efficient cell tracking in vivo. Genesis 39:94–99

    Article  PubMed  Google Scholar 

  • Vermeulen A, Behlen L, Reynolds A, Wolfson A, Marshall WS, Karpilow J, Khvorova A (2005) The contributions of dsRNA structure to Dicer specificity and efficiency. Rna 11:674–682

    Article  CAS  PubMed  Google Scholar 

  • Wisely GB, Miller AB, Davis RG, Thornquest AD Jr, Johnson R, Spitzer T, Sefler A, Shearer B, Moore JT, Willson TM, Williams SP (2002) Hepatocyte nuclear factor 4 is a transcription factor that constitutively binds fatty acids. Structure (Camb) 10:1225–1234

    Article  CAS  Google Scholar 

  • Wu X, Li Y, Crise B, Burgess SM (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300:1749–1751

    Article  CAS  PubMed  Google Scholar 

  • Yu JY, DeRuiter SL, Turner DL (2002) RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA 99:6047–6052

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Herbert Spring from the Biomedical Structure Analysis Group (A0600) DKFZ for the help with confocal microscopy and to Dr. David Engblom for critical reading of the manuscript. This work was supported by the “Deutsche Forschungsgemeinschaft” through Collaborative Research Centres SFB 488 and SFB 636, FOR Ot 165/2-2, GRK 791/1.02, and Sachbeihilfe Schu 51/7-2, by the “Fonds der Chemischen Industrie”, the European Union through grant LSHM-CT-2005-018652 (CRESCENDO), the Bundesministerium für Bildung und Forschung (BMBF) through NGFN grants FZK 01GS01117, 01GS0477 and KGCV1/01GS0416, German-Polish Cooperation project 01GZ0310, and project number 0313074C (Systems Biology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günther Schütz.

Additional information

Milen Kirilov and Minqiang Chai contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirilov, M., Chai, M., van der Hoeven, F. et al. Germ line transmission and expression of an RNAi cassette in mice generated by a lentiviral vector system. Transgenic Res 16, 783–793 (2007). https://doi.org/10.1007/s11248-007-9119-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-007-9119-6

Keywords

Navigation