Skip to main content

Advertisement

Log in

Assessment of the diversity and dynamics of Plum pox virus and aphid populations in transgenic European plums under Mediterranean conditions

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The molecular variability of Plum pox virus (PPV) populations was compared in transgenic European plums (Prunus domestica L.) carrying the coat protein (CP) gene of PPV and non-transgenic plums in an experimental orchard in Valencia, Spain. A major objective of this study was to detect recombination between PPV CP transgene transcripts and infecting PPV RNA. Additionally, we assessed the number and species of PPV aphid vectors that visited transgenic and non-transgenic plum trees. Test trees consisted of five different P. domestica transgenic lines, i.e. the PPV-resistant C5 ‘HoneySweet’ line and the PPV-susceptible C4, C6, PT6 and PT23 lines, and non-transgenic P. domestica and P. salicina Lind trees. No significant difference in the genetic diversity of PPV populations infecting transgenic and conventional plums was detected, in particular no recombinant between transgene transcripts and incoming viral RNA was found at detectable levels. Also, no significant difference was detected in aphid populations, including viruliferous individuals, that visited transgenic and conventional plums. Our data indicate that PPV-CP transgenic European plums exposed to natural PPV infection over an 8 year period caused limited, if any, risk beyond the cultivation of conventional plums under Mediterranean conditions in terms of the emergence of recombinant PPV and diversity of PPV and aphid populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Avinent L, Hermoso de Mendoza A, Llácer G (1989) Especies dominantes y curvas de vuelo de pulgones (Homoptera, Aphidinea) en campos de frutales de hueso españoles. Invest Agraria Prod Prot Veget 4:283-298

    Google Scholar 

  • Avinent L, Hermoso de Mendoza A, Llácer G (1991) Comparison of traps for captures of alate aphids (Homoptera, Aphidinea). Agronomie 11:613–618

    Article  Google Scholar 

  • Avinent L, Hermoso de Mendoza A, Llácer G (1993) Comparison of sampling methods to evaluate aphid populations (Homoptera, Aphidinea) alighting on apricot trees. Agronomie 13:609–613

    Article  Google Scholar 

  • Badenes ML, Moustafa TA, Martínez-Calvo J, Llácer G (2006) Resistance to sharka trait in a family from selfpollination of ‘Lito’ apricot cultivar. Acta Hortic 701:381–384

    Google Scholar 

  • Boscia D, Zeramdini H, Cambra M, Potere O, Gorris MT, Myrta A (1997) Production and characterization of a monoclonal antibody specific to the M serotype of Plum pox potyvirus. Eur J Plant Pathol 103:447–480

    Article  Google Scholar 

  • Cambra M, Asensio M, Gorris MT, Pérez E, Camarasa E, García JA, López-Moya JJ, López-Abella D, Vela C, Sanz A (1994) Detection of Plum pox potyvirus using monoclonal antibodies to structural and non structural proteins. Bull OEPP/EPPO Bull 24:569–577

    Google Scholar 

  • Cambra M, Gorris MT, Marroquín C, Román MP, Olmos A, Martínez MC, Hermoso de Mendoza A, López A, Navarro L (2000) Incidence and epidemiology of Citrus tristeza virus in the Valencia Community of Spain. Virus Res 71:85–95

    Article  PubMed  CAS  Google Scholar 

  • Cambra M, Gorris MT, Capote N, Asensio M, Martínez MC, Bertolini E, Collado C, Hermoso de Mendoza A, Matáix E, López A (2004) Epidemiology of Plum pox virus in Japanese plums in Spain. Acta Hortic 657:195–200

    Google Scholar 

  • Cambra M, Capote N, Cambra MA, Llácer G, Botella P, López-Quílez A (2006) Epidemiology of sharka disease in Spain. Bull OEPP/EPPO Bull 36:271–275

    Google Scholar 

  • Cambra M, Capote N, Myrta A, Llácer G (2006) Plum pox virus and the estimated costs associated with sharka disease. Bull OEPP/EPPO Bull 36:202–204

    Google Scholar 

  • Candresse T, Cambra M (2006) Causal agent of sharka disease: historical perspective and current status of Plum pox virus strains. Bull OEPP/EPPO Bull 36:239–246

    Google Scholar 

  • Candresse T, Macquaire G, Lanneau M, Bousalem M, Wetzel T, Quiot-Dounie L, Quiot JB, Dunez J (1994) Detection of Plum pox potyvirus and analysis of its molecular variability using immunocapture-PCR. Bull OEPP/EPPO Bull 24:585–594

    Google Scholar 

  • Capote N, Cambra M (2005) Variability of Plum pox virus populations in PPV-resistant transgenic and non-transgenic plums. Phytopathol Pol 36:107–113

    Google Scholar 

  • Capote N, Gorris MT, Martínez MC, Asensio M, Olmos A, Cambra M (2006) Interference between D and M types of Plum pox virus in Japanese plums assessed by specific monoclonal antibodies and quantitative real-time RT-PCR. Phytopathology 96:320–325

    Article  CAS  PubMed  Google Scholar 

  • Cervera MT, Riechmann JL, Martin MT, García JA (1993) 3’-terminal sequence of the Plum pox virus PS and o6 isolates: evidence for RNA recombination within the Potyvirus group. J Gen Virol 74:329–334

    PubMed  CAS  Google Scholar 

  • Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Fuchs M, Klas FE, McFerson JR, Gonsalves D (1998) Transgenic melon and squash expressing coat protein genes of Aphid-borne viruses do not assist the spread of an Aphid non-transmissible strain of Cucumber mosaic virus in the field. Transgenic Res 7:449–462

    Article  CAS  Google Scholar 

  • Glasa M, Kúdela O, Marie-Jeanne V, Quiot JB (2001) Evidence of naturally occurring recombinant Plum pox virus isolate from Slovakia. Plant Dis 85:920

    Article  Google Scholar 

  • Glasa M, Marie-Jeanne V, Labonne G, Šubr Z, Kúdela O, Quiot JB (2002) Natural population of recombinant Plum pox virus is stable and competitive under field conditions. Eur J Plant Pathol 108:843–853

    Article  CAS  Google Scholar 

  • Glasa M, Palkovics L, Komínek P, Labonne G, Pittnerová S, Kúdela O, Candresse T, Šubr Z (2004) Geographically and temporally distant natural recombinant isolates of Plum pox virus (PPV) are genetically very similar and form a unique PPV subgroup. J Gen Virol 85:2671–2681

    Article  PubMed  CAS  Google Scholar 

  • Glasa M, Paunovic S, Jevremovic D, Myrta A, Pittnerová S, Candresse T (2005) Analysis of recombinant Plum pox virus (PPV) isolates from Serbia confirms genetic homogeneity and supports a regional origin for the PPV-Rec subgroup. Arch Virol 150:2051–2060

    Article  PubMed  CAS  Google Scholar 

  • Greene AE, Allison FR (1994) Recombination between viral RNA and transgenic plant transcripts. Science 263:1423–1425

    Article  PubMed  CAS  Google Scholar 

  • Greene AE, Allison FR (1996) Deletions in the 3’ untranslated region of cowpea chlorotic mottle virus transgene reduce recovery of recombinant viruses in transgenic plants. Virology 225:231–234

    Article  PubMed  CAS  Google Scholar 

  • Hily JM, Scorza R, Malinowski T, Zawadzka B, Ravelonandro M (2004) Stability of gene silencing-based resistance to Plum pox virus in transgenic plum (Prunus domestica L.) under field conditions. Transgenic Res 13:427–436

    Article  PubMed  CAS  Google Scholar 

  • Hily JM, Scorza R, Webb K, Ravelonandro M (2005) Accumulation of the long class of siRNA is associated with resistance to Plum pox virus in a transgenic woody perennial plum tree. Mol Plant Microbe Interact 18:794–799

    Article  PubMed  CAS  Google Scholar 

  • James D, Glasa M (2006) Causal agent of sharka disease: new and emerging events associated with Plum pox virus characterization. Bull OEPP/EPPO Bull 36:247–250

    Google Scholar 

  • James D, Varga A (2005) Nucleotide sequence analysis of Plum pox virus isolate W3174: Evidence of a new strain. Virus Res 110:143–150

    Article  PubMed  CAS  Google Scholar 

  • Kegler H, Fuchs E, Gruntzig M, Schwarz S (1998) Some results of 50 years of research on the resistance to Plum pox virus. Acta Virol 42:200–215

    PubMed  CAS  Google Scholar 

  • Kunze L, Krczal H (1971) Transmisssion of Sharka virus by aphids. Ann Phytopathol HS:255–260

    Google Scholar 

  • Labonne G, Dallot S (2006) Epidemiology of sharka disease in France. Bull OEPP/EPPO Bull 36:267–270

    Google Scholar 

  • López-Moya JJ, Fernández-Fernández MR, Cambra M, García JA (2000) Biotechnological aspects of Plum pox virus. J Biotechnol 76:121–136

    Article  PubMed  Google Scholar 

  • Lole KS, Bollinger RC, Paranjape RS, Gadkari D, Kulkarni SS, Novak NG, Ingersoll R, Sheppard HW, Ray SC (1999) Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 73:152–60

    PubMed  CAS  Google Scholar 

  • Malinowski T, Zawadzka B, Ravelonandro M, Scorza R (1998) Preliminary report on the apparent breaking of resistance of a transgenic plum by chip bud inoculation of Plum pox virus PPV-S. Acta Virol 42:241–243

    PubMed  CAS  Google Scholar 

  • Malinowski T, Cambra M, Capote N, Zawadzka B, Gorris MT, Scorza R, Ravelonandro M (2006) Field trials of plum clones transformed with the Plum pox virus coat protein (PPV-CP) gene. Plant Dis 90:1012–1018

    Article  CAS  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized Linear Models, 2nd edn. Cahpman & Hall, London

    Google Scholar 

  • Myrta A, Potere O, Boscia D, Candresse T, Cambra M, Savino V (1998) Production of a monoclonal antibody specific to the El Amar strain of Plum pox virus. Acta Virol 42:248–250

    PubMed  CAS  Google Scholar 

  • Myrta A, Potere O, Crescenzi A, Nuzzaci M, Boscia D (2000) Production of two monoclonal antibodies specific to cherry strain of Plum pox virus (PPV-C). J Plant Pathol 82:95–103

    CAS  Google Scholar 

  • Neumüller M, Hartmann W, Stösser R (2005) The hypersensitivity of European plum against PPV as a promising mechanism of resistance. Phytopathol Pol 36:77–83

    Google Scholar 

  • Ng JCK, Perry KL (2004) Transmission of plant viruses by aphid vectors. Mol Plant Pathol 5:505–511

    Article  Google Scholar 

  • Olmos A, Dasí MA, Candresse T, Cambra M (1996) Print-capture PCR: A simple and highly sensitive method for the detection of Plum pox virus (PPV) in plant tissues. Nucleic Acids Res 24:2192–2193

    Article  PubMed  CAS  Google Scholar 

  • Olmos A, Bertolini E, Gil M, Cambra M (2005) Real-time assay for quantitative detection of non-persistently transmitted Plum pox virus RNA targets in single aphids. J Virol Methods 128:151–155

    Article  PubMed  CAS  Google Scholar 

  • Ravelonandro M, Scorza R, Bachelier JC, Labonne G, Levy L, Damsteegt V, Callahan AM, Dunez J (1997) Resistance of transgenic Prunus domestica to Plum pox virus infection. Plant Dis 81:1231–1235

    Article  CAS  Google Scholar 

  • Ravelonandro M, Varveri C, Delbos R, Dunez J (1998) Nucleotide sequence of the capsid protein gene of Plum pox potyvirus. J Gen Virol 69:1509–1516

    Article  Google Scholar 

  • Ravelonandro M, Scorza R, Minoiu N, Zagrai I, Platon I (2002) Field tests of transgenic plums in Romania. Sănătatea Plant 6:16–17

    Google Scholar 

  • Rubio T, Borja M, Scholthof HB, Jackson AO (1999) Recombination with host transgenes and effects on virus evolution: An overview and opinion. Mol Plant Microbe Interact 12:87–92

    Article  CAS  Google Scholar 

  • Scorza R, Ravelonandro M, Callahan AM, Cordts JM, Fuchs M, Dunez J, Gonsalves D (1994) Transgenic plums (Prunus domestica L.) express the Plum pox virus coat protein gene. Plant Cell Rep 14:18–22

    Article  CAS  Google Scholar 

  • Scorza R, Callahan A, Levy L, Damsteegt V, Webb K, Ravelonandro M (2001) Post-transcriptional gene silencing in Plum pox virus resistant transgenic European plum containing the Plum pox potyvirus coat protein gene. Transgenic Res 10:201–209

    Article  PubMed  CAS  Google Scholar 

  • Scorza R, Hily JM, Callahan A, Malinowski T, Cambra M, Capote N, Zagrai I, Damsteeg V, Briard P and Ravelonandro M (2007) Deregulation of plum pox resistant transgenic plum “HoneySweet”. Acta Hortic (in press)

  • Szemes M, Kalman M, Myrta A, Boscia D, Nemeth M, Kölber M, Dorgai L (2001) Integrated RT-PCR/nested PCR diagnosis for differentiating between subgroups of Plum pox virus. J Virol Methods 92:165–175

    Article  PubMed  CAS  Google Scholar 

  • Thompson DA, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Thomas PE, Hassan S, Kaniewski WK, Lawson EC, Zalewski JC (1998) A search for evidence of virus/transgene interactions in potatoes transformed with the Potato leafroll virus replicase and coat protein genes. Mol Breeding 4:407–417

    Article  CAS  Google Scholar 

  • Varrelman M, Palkovics L, Maiss E (2000) Transgenic or plant expression vector-mediated recombination of Plum pox virus. J Virol 74:7462–7469

    Article  Google Scholar 

  • Varveri C, Zintzaras E, Dimou D, Papapanagiotou A, Di Terlizzi B (2004) Monitoring and spatio-temporal analysis of PPV-M spread in two apricot orchards in Southern Greece. Ann Benaki Phytopathol Inst 20:1–9

    Google Scholar 

  • Vigne E, Komar V, Fuchs M (2004) Field safety assessment of recombination in transgenic grapevines expressing the coat protein gene of Grapevine fanleaf virus. Transgenic Res 13:165–179

    Article  PubMed  CAS  Google Scholar 

  • Wallis CM, Fleischer SJ, Luster D, Gildow FE (2005) Aphid (Hemiptera: Aphididae) species composition and potential aphid vectors of Plum pox virus in Pennsylvania peach orchards. J Econ Entomol 98:1441–1450

    Article  PubMed  CAS  Google Scholar 

  • Wetzel T, Candresse T, Ravelonandro M, Dunez J (1991) A polymerase chain reaction assay adapted to Plum pox potyvirus detection. J Virol Methods 33:355–365

    Article  PubMed  CAS  Google Scholar 

  • Wintermantel WM, Schoelz JE (1996) Isolation of recombinant viruses between cauliflower mosaic virus and a viral gene in transgenic plants under conditions of moderate selection pressure. Virology 223:156–164

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European project TRANSVIR (QLK3-CT-2002-02140), INIA (SC98-060 and RTA03-099) and Ministerio de Educación y Ciencia (RTA05-00190) projects. Authors thank to C. Collado (IVIA) for determination of aphid species, to B. Tamargo and J. Micó (Cooperativa Vinícola de Liria) for technical assistance in the experimental plot, to Dr. S. Elena for assistance in recombination analyses and to Dr. M. Fuchs for critical reading of the manuscript. Permissions for field release of GMO Nos. B/ES/96/16 and B/ES/05/14 were given by the Spanish Ministerio de Medio Ambiente.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Cambra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capote, N., Pérez-Panadés, J., Monzó, C. et al. Assessment of the diversity and dynamics of Plum pox virus and aphid populations in transgenic European plums under Mediterranean conditions. Transgenic Res 17, 367–377 (2008). https://doi.org/10.1007/s11248-007-9112-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-007-9112-0

Keywords

Navigation