Skip to main content
Log in

Improvement of the pBI121 plant expression vector by leader replacement with a sequence combining a poly(CAA) and a CT motif

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

To improve expression levels of recombinant proteins in plants, a new leader sequence was designed. Several elements known to enhance gene translation and/or transcription were considered, including the CaMV 35S Inr site, a CT-rich motif often shared by highly expressed plant genes and a poly(CAA) region widespread in tobamovirus and plant leaders. The effect of the synthetic leader on gusA expression was evaluated in genetically modified tobacco plants by measuring the β-glucuronidase activity and the mRNA level. When compared to the gusA leader of pBI121, the new sequence determined a 8.6-fold and a 12.5-fold increase of enzyme concentration taking into account the whole plant population or the above-average expressors, respectively. Since most pCAMBIA vectors harbour a very short 5′-UTR, identical to a fragment of the pBI121 leader, leader replacement with the sequence herein described is strongly suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bolle C, Sopory S, Lubberstedt Th, Herrmann RG, Oelmüller R (1994) Segments encoding 5′-untranslated leaders of genes for thylakoid proteins contain cis-elements essential for transcription. Plant J 6:513–523

    Article  PubMed  CAS  Google Scholar 

  • Bolle C, Herrmann RG, Oelmüller R (1996) Different sequences for 5′-untranslated leaders of nuclear genes for plastid proteins affect the expression of the β-glucuronidase gene. Plant Mol Biol 32:861–868

    Article  PubMed  CAS  Google Scholar 

  • Caspar T, Quail PH (1993) Promoter and leader region involved in the expression of the Arabidopsis ferredoxin A gene. Plant J 3:161–174

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Rothnie HM, He X, Hfohn T, Fütterer J (1996) Efficient transcription from the rice Tungro Bacilliform Virus promoter requires elements downstream of the transcription start site. J Virol 70:8411–8421

    PubMed  CAS  Google Scholar 

  • Choisne N, Carneiro VTC, Pelletier G, Small I (1997) Implication of 5′-flanking sequence elements in expression of a plant tRNALeu gene. Plant Mol Biol 36:113–123

    Article  Google Scholar 

  • Dey N, Maiti IB (1999) Structure and promoter/leader deletion analysis of mirabilis mosaic virus (MMV) full-length transcript promoter in transgenic plants. Plant Mol Biol 40:771–782

    Article  PubMed  CAS  Google Scholar 

  • Dowson Day MJ, Ashurst JL, Mathias SF, Watts JW, Wilson TM, Dixon RA (1993) Plant viral leaders influence expression of a reporter gene in tobacco. Plant Mol Biol 23:97–109

    Article  PubMed  CAS  Google Scholar 

  • Fütterer J, Gordon K, Sanfacon H, Bonneville J-M, Hohn T (1990) Positive and negative control of translation by the leader sequence of cauliflower mosaic virus pregenomic 35S RNA. EMBO J 9:1697–1707

    PubMed  Google Scholar 

  • Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TMA (1987) A comparison of eukaryotic viral 5′-leader sequences as enhancers of mRNA expression in vivo. Nucleic Acids Res 15:8693–8711

    Article  PubMed  CAS  Google Scholar 

  • Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TMA (1988a) Mutational analysis of the tobacco mosaic virus 5′-leader for altered ability to enhance translation. Nucleic Acids Res 16:883–893

    Article  CAS  Google Scholar 

  • Gallie DR, Walbot V, Hershey JWB (1988b) The ribosomal fraction mediates the translational enhancement associated with the 5′-leader of tobacco mosaic virus. Nucleic Acids Res 16:8675–8694

    Article  CAS  Google Scholar 

  • Gallie DR, Walbot V (1992) Identification of the motifs within the tobacco mosaic virus 5′-leader responsible for enhancing translation. Nucleic Acids Res 20:4631–4638

    Article  PubMed  CAS  Google Scholar 

  • Gallie DR (1993) Posttranscriptional regulation of gene expression in plants. Ann Rev Plant Physiol Plant Mol Biol 44:77–105

    Article  CAS  Google Scholar 

  • Gallie DR (2002) The 5′-leader of tobacco mosaic virus promotes translation through enhanced recruitment of eIF4F. Nucleic Acids Res 30:3401–3411

    Article  PubMed  CAS  Google Scholar 

  • Guilley H, Dudley RK, Jonard G, Balazs E, Richards KE (1982) Transcription of Cauliflower Mosaic Virus DNA: detection of promoter sequences, and characterization of transcripts. Cell 30:763–773

    Article  PubMed  CAS  Google Scholar 

  • Holtorf S, Apel K, Bohlmann H (1995) Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana. Plant Mol Biol 29:637–646

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SD, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Jefferson RA (1989) The GUS reporter gene system. Nature 342:837–838

    Article  PubMed  CAS  Google Scholar 

  • Jobling SA, Gehrke L (1987) Enhanced translation of chimaeric messenger RNAs containing a plant viral untranslated leader sequence. Nature 325:622–625

    Article  PubMed  CAS  Google Scholar 

  • Joshi CP (1987) An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Res 15:6643–6653

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1986) Influences of mRNA secondary structure on initiation by eukaryotic ribosomes. Proc Natl Acad Sci USA 83:2850–2854

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1991a) Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem 266:19867–19870

    CAS  Google Scholar 

  • Kozak M (1991b) Effects of long 5′ leader sequences on initiation by eukaryotic ribosomes in vitro. Gene Expr 1:117–125

    CAS  Google Scholar 

  • Lutcke HA, Chow KC, Mickel FS, Moss KA, Kern HF, Scheele GA (1987) Selection of AUG initiation codons differs in plants and animals. EMBO J 6:43–48

    PubMed  CAS  Google Scholar 

  • Mitsuhara I, Ugaki M, Hirochika H, Ohshima M, Murakami T, Gotoh Y, Katayose Y, Nakamura S, Honkura R, Nishimiya S, Ueno K, Mochizuki A, Tanimoto H, Tsugawa H, Otsuki Y, Ohashi Y (1996) Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol 37:49–59

    PubMed  CAS  Google Scholar 

  • Podromou C, Pearl LH (1992) Recursive PCR: a novel technique for total gene synthesis. Protein Eng 5:827–829

    Article  Google Scholar 

  • Pooggin MM, Skryabin KG (1992) The 5′-untranslated sequence of potato virus X RNA enhances the expression of a heterologous gene in vivo. Mol Gen Genet 234:329–331

    Article  PubMed  CAS  Google Scholar 

  • Schmitz J, Prüfer D, Rohde W, Tacke E (1996) Non-canonical translation mechanisms in plants: efficient in vitro and in planta initiation at AUU codons of the tobacco mosaic virus enhancer sequence. Nucleic Acids Res 24:257–263

    Article  PubMed  CAS  Google Scholar 

  • Tyc K, Konarska M, Gross HJ, Filipowicz W (1984) Multiple ribosome binding to the 5′-terminal leader sequence of tobacco mosaic virus RNA. Eur J Biochem 140:503–511

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Wessler SR (2001) Role of mRNA secondary structure in translational repression of the maize transcriptional activator Lc 1,2. Plant Physiol 125:1380–1387

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Ohnishi J, Saitoh H, Hosokawa D, Okada Y (1996) Addition of nucleotides similar to deleted CAA repeats in the 5′ non-coding region of tomato mosaic virus RNA following propagation. J Gen Virol 77:2353–2357

    Article  PubMed  CAS  Google Scholar 

  • Wells DR, Tanguay RL, Le H, Gallie DR (1998) HSP101 functions as a specific translational regulatory protein whose activity is regulated by nutrient status. Genes Dev 12:3236–3251

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Gian Luca Bianchi (ERSA, Friuli Venezia Giulia, Italy) for technical assistance during real-time PCR. We also thank Dr. Dario Marchetti, Professor and Director of Tumor Biology Laboratories at LSU-Baton Rouge (Baton Rouge, LA, U.S.A.) for critically editing our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Marchetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Amicis, F., Patti, T. & Marchetti, S. Improvement of the pBI121 plant expression vector by leader replacement with a sequence combining a poly(CAA) and a CT motif. Transgenic Res 16, 731–738 (2007). https://doi.org/10.1007/s11248-006-9063-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-006-9063-x

Keywords

Navigation