Skip to main content
Log in

Synergy Between Ceria and Metals (Ag or Cu) in Catalytic Diesel Particulate Filters: Effect of the Metal Content and of the Preparation Method on the Regeneration Performance

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The catalytic performance in soot oxidation of lab-scale silicon carbide (SiC) diesel particulate filters (DPFs) washcoated with metal-promoted CeO2 has been investigated focusing on the amount and the nature of the metal (Ag or Cu), and on the preparation method for the catalytic washcoat deposition. A wide range of metal loads was explored. The metal-promoted washcoat was dispersed onto the filters according to two methods: method (A)—cycles of deposition of metal nitrate after previous deposition of nanometric CeO2, up to the achievement of the target load; method (B)—filter dipping into a suspension containing both CeO2 and metal nitrate in a suitable ratio. Bare Ag DPFs have also been investigated for the sake of comparison. Catalysts were characterized by SEM/EDX, Hg intrusion porosimetry and TPR and O2-TPD techniques. All samples show a high metal dispersion and some reduction of support macro-pores. The metal addition improves the catalytic performance of bare ceria basically decreasing the temperature corresponding to the maximum soot oxidation rate. The positive effect increases with increasing metal load. As far as the method A is concerned, a better activity has been found for Cu-promoted catalysts with respect to the corresponding Ag-promoted catalysts with the same amount of metal. Ag-promoted catalysts prepared according to the method B are much more active than all other samples, showing a marked reduction of activation temperature as well. As disclosed by the analysis of redox properties and oxygen mobility, the method B significantly enhances the silver-ceria interface where highly reactive oxygen species (Onx−) are produced, providing the outstanding activity of these catalysts. This same effect is much less evident in the case of Cu-promoted catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Data available on request from the authors.

References

  1. Fino D, Bensaid S, Piumetti M, Russo N (2016) A review on the catalytic combustion of soot in diesel particulate filters for automotive applications: from powder catalysts to structured reactors. Appl Catal A Gen 509:75–96. https://doi.org/10.1016/j.apcata.2015.10.016

    Article  CAS  Google Scholar 

  2. Guan B, Zhan R, Lin H, Huang Z (2015) Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines. J Environ Manag 154:225–258. https://doi.org/10.1016/j.jenvman.2015.02.027

    Article  CAS  Google Scholar 

  3. Tandon P, Heibel A, Whitmore J et al (2010) Measurement and prediction of filtration efficiency evolution of soot loaded diesel particulate filters. Chem Eng Sci 65:4751–4760. https://doi.org/10.1016/j.ces.2010.05.020

    Article  CAS  Google Scholar 

  4. Gnann T, Plötz P, Wietschel M (2012) Range limits of electric vehicles: invest in charging infrastructure or buy larger batteries: a techno-economic comparison. In Enerday, 7th Conf Energy Econ Technol “Infrastructure Energy Transform” (6 pp)

  5. Rico Pérez V, Bueno-López A (2015) Catalytic regeneration of diesel particulate filters: comparison of Pt and CePr active phases. Chem Eng J 279:79–85. https://doi.org/10.1016/j.cej.2015.05.004

    Article  CAS  Google Scholar 

  6. Di Sarli V, Landi G, Lisi L et al (2016) Catalytic diesel particulate filters with highly dispersed ceria: effect of the soot-catalyst contact on the regeneration performance. Appl Catal B Environ 197:116–124. https://doi.org/10.1016/j.apcatb.2016.01.073

    Article  CAS  Google Scholar 

  7. Nascimento LF, Lima JF, de Sousa Filho PC, Serra OA (2016) Control of diesel particulate emission based on Ag/CeOx/FeOy catalysts supported on cordierite. Chem Eng J 290:454–464. https://doi.org/10.1016/j.cej.2016.01.043

    Article  CAS  Google Scholar 

  8. Di Sarli V, Landi G, Lisi L, Di Benedetto A (2017) Ceria-coated diesel particulate filters for continuous regeneration. AIChE J 63:3442–3449. https://doi.org/10.1002/aic.15688

    Article  CAS  Google Scholar 

  9. Su C, Wang Y, Kumar A, McGinn P (2018) Simulating real world soot-catalyst contact conditions for lab-scale catalytic soot oxidation studies. Catalysts 8:247. https://doi.org/10.3390/catal8060247

    Article  CAS  Google Scholar 

  10. Machida M, Murata Y, Kishikawa K et al (2008) On the reasons for high activity of CeO2 catalyst for soot oxidation. Chem Mater 20:4489–4494. https://doi.org/10.1021/cm800832w

    Article  CAS  Google Scholar 

  11. Liu S, Wu X, Weng D, Ran R (2015) Ceria-based catalysts for soot oxidation: a review. J Rare Earths 33:567–590. https://doi.org/10.1016/S1002-0721(14)60457-9

    Article  CAS  Google Scholar 

  12. Muroyama H, Asajima H, Hano S et al (2015) Effect of an additive in a CeO2-based oxide on catalytic soot combustion. Appl Catal A Gen 489:235–240. https://doi.org/10.1016/j.apcata.2014.10.039

    Article  CAS  Google Scholar 

  13. Vinodkumar T, Rao BG, Reddy BM (2015) Influence of isovalent and aliovalent dopants on the reactivity of cerium oxide for catalytic applications. Catal Today 253:57–64. https://doi.org/10.1016/j.cattod.2015.01.044

    Article  CAS  Google Scholar 

  14. Rico-Pérez V, Aneggi E, Bueno-López A, Trovarelli A (2016) Synergic effect of Cu/Ce0.5Pr0.5O2-δ and Ce0.5Pr0.5O2-δ in soot combustion. Appl Catal B Environ 197:95–104. https://doi.org/10.1016/j.apcatb.2016.02.051

    Article  CAS  Google Scholar 

  15. Krishna K, Bueno-López A, Makkee M, Moulijn JA (2007) Potential rare earth modified CeO2 catalysts for soot oxidation. I. Characterisation and catalytic activity with O2. Appl Catal B Environ 75:189–200. https://doi.org/10.1016/j.apcatb.2007.04.010

    Article  CAS  Google Scholar 

  16. Katta L, Sudarsanam P, Thrimurthulu G, Reddy BM (2010) Doped nanosized ceria solid solutions for low temperature soot oxidation: zirconium versus lanthanum promoters. Appl Catal B Environ 101:101–108. https://doi.org/10.1016/j.apcatb.2010.09.012

    Article  CAS  Google Scholar 

  17. Mori K, Jida H, Kuwahara Y, Yamashita H (2020) CoOx-decorated CeO2 heterostructures: effects of morphology on their catalytic properties in diesel soot combustion. Nanoscale 12:1779–1789. https://doi.org/10.1039/c9nr08899g

    Article  CAS  PubMed  Google Scholar 

  18. Zhao H, Li H, Pan Z et al (2020) Design of CeMnCu ternary mixed oxides as soot combustion catalysts based on optimized Ce/Mn and Mn/Cu ratios in binary mixed oxides. Appl Catal B Environ 268:118422. https://doi.org/10.1016/j.apcatb.2019.118422

    Article  CAS  Google Scholar 

  19. Wang J, Yang S, Sun H et al (2020) Highly improved soot combustion performance over synergetic MnxCe1−xO2 solid solutions within mesoporous nanosheets. J Colloid Interface Sci 577:355–367. https://doi.org/10.1016/j.jcis.2020.05.090

    Article  CAS  PubMed  Google Scholar 

  20. Cui B, Yan S, Xia Y et al (2019) CuxCe1-xO2 nanoflakes with improved catalytic activity and thermal stability for diesel soot combustion. Appl Catal A Gen 578:20–29. https://doi.org/10.1016/j.apcata.2019.03.025

    Article  CAS  Google Scholar 

  21. Sudarsanam P, Hillary B, Amin MH et al (2018) Heterostructured copper-ceria and iron-ceria nanorods: role of morphology, redox, and acid properties in catalytic diesel soot combustion. Langmuir 34:2663–2673. https://doi.org/10.1021/acs.langmuir.7b03998

    Article  CAS  PubMed  Google Scholar 

  22. He H, Lin X, Li S et al (2018) The key surface species and oxygen vacancies in MnOx(0.4)-CeO2 toward repeated soot oxidation. Appl Catal B Environ 223:134–142. https://doi.org/10.1016/j.apcatb.2017.08.084

    Article  CAS  Google Scholar 

  23. Cheng Y, Liu J, Zhao Z et al (2017) The simultaneous purification of PM and NOx in diesel engine exhausts over a single 3DOM Ce0.9−xFe0.1ZrxO2 catalyst. Environ Sci Nano 4:1168–1177. https://doi.org/10.1039/c7en00170c

    Article  CAS  Google Scholar 

  24. Dhakad M, Mitshuhashi T, Rayalu S et al (2008) Co3O4-CeO2 mixed oxide-based catalytic materials for diesel soot oxidation. Catal Today 132:188–193. https://doi.org/10.1016/j.cattod.2007.12.035

    Article  CAS  Google Scholar 

  25. Legutko P, Jakubek T, Kaspera W et al (2017) Strong enhancement of deSoot activity of transition metal oxides by alkali doping: additive effects of potassium and nitric oxide. Top Catal 60:162–170. https://doi.org/10.1007/s11244-016-0727-3

    Article  CAS  Google Scholar 

  26. Sui L, Wang Y, Kang H et al (2017) Effect of Cs-Ce-Zr catalysts/soot contact conditions on diesel soot oxidation. ACS Omega 2:6984–6990. https://doi.org/10.1021/acsomega.7b01037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alinezhadchamazketi A, Khodadadi AA, Mortazavi Y, Nemati A (2013) Catalytic evaluation of promoted CeO2-ZrO2 by transition, alkali, and alkaline-earth metal oxides for diesel soot oxidation. J Environ Sci (China) 25:2498–2506. https://doi.org/10.1016/S1001-0742(12)60334-9

    Article  CAS  Google Scholar 

  28. Shimokawa H, Kurihara Y, Kusaba H et al (2012) Comparison of catalytic performance of Ag- and K-based catalysts for diesel soot combustion. Catal Today 185:99–103. https://doi.org/10.1016/j.cattod.2011.10.030

    Article  CAS  Google Scholar 

  29. Ledwa KA, Pawlyta M, Kępiński L (2018) RuxCe1-xO2-y nanoparticles deposited on functionalized γ-Al2O3 as a thermally stable oxidation catalyst. Appl Catal B Environ 230:135–144. https://doi.org/10.1016/j.apcatb.2018.02.037

    Article  CAS  Google Scholar 

  30. Kurnatowska M, Mista W, Mazur P, Kepinski L (2014) Nanocrystalline Ce1-xRuxO2 - Microstructure, stability and activity in CO and soot oxidation. Appl Catal B Environ 148–149:123–135. https://doi.org/10.1016/j.apcatb.2013.10.047

    Article  CAS  Google Scholar 

  31. Wei Y, Zhao Z, Yu X et al (2013) One-pot synthesis of core-shell Au@CeO2-δ nanoparticles supported on three-dimensionally ordered macroporous ZrO2 with enhanced catalytic activity and stability for soot combustion. Catal Sci Technol 3:2958–2970. https://doi.org/10.1039/c3cy00248a

    Article  CAS  Google Scholar 

  32. Andana T, Piumetti M, Bensaid S et al (2017) Ceria-supported small Pt and Pt3Sn nanoparticles for NOx-assisted soot oxidation. Appl Catal B Environ 209:295–310. https://doi.org/10.1016/j.apcatb.2017.03.010

    Article  CAS  Google Scholar 

  33. Grabchenko MV, Mikheeva NN, Mamontov GV et al (2018) Ag/CeO2 composites for catalytic abatement of CO, soot and VOCs. Catalysts 8:285. https://doi.org/10.3390/catal8070285

    Article  CAS  Google Scholar 

  34. Gao Y, Duan A, Liu S et al (2017) Study of Ag/CexNd1-xO2 nanocubes as soot oxidation catalysts for gasoline particulate filters: balancing catalyst activity and stability by Nd doping. Appl Catal B Environ 203:116–126. https://doi.org/10.1016/j.apcatb.2016.10.006

    Article  CAS  Google Scholar 

  35. Corro G, Flores A, Pacheco-Aguirre F et al (2019) Biodiesel and fossil-fuel diesel soot oxidation activities of Ag/CeO2 catalyst. Fuel 250:17–26. https://doi.org/10.1016/j.fuel.2019.03.043

    Article  CAS  Google Scholar 

  36. Deng X, Li M, Zhang J et al (2017) Constructing nano-structure on silver/ceria-zirconia towards highly active and stable catalyst for soot oxidation. Chem Eng J 313:544–555. https://doi.org/10.1016/j.cej.2016.12.088

    Article  CAS  Google Scholar 

  37. Sawatmongkhon B, Theinnoi K, Wongchang T et al (2019) Catalytic oxidation of diesel particulate matter by using silver and ceria supported on alumina as the oxidation catalyst. Appl Catal A Gen 574:33–40. https://doi.org/10.1016/j.apcata.2019.01.020

    Article  CAS  Google Scholar 

  38. Lee JH, Lee SH, Choung JW et al (2019) Ag-incorporated macroporous CeO2 catalysts for soot oxidation: effects of Ag amount on the generation of active oxygen species. Appl Catal B Environ 246:356–366. https://doi.org/10.1016/j.apcatb.2019.01.064

    Article  CAS  Google Scholar 

  39. Liu S, Wu X, Liu W et al (2016) Soot oxidation over CeO2 and Ag/CeO2: factors determining the catalyst activity and stability during reaction. J Catal 337:188–198. https://doi.org/10.1016/j.jcat.2016.01.019

    Article  CAS  Google Scholar 

  40. Aneggi E, Llorca J, de Leitenburg C et al (2009) Soot combustion over silver-supported catalysts. Appl Catal B Environ 91:489–498. https://doi.org/10.1016/j.apcatb.2009.06.019

    Article  CAS  Google Scholar 

  41. Ivanova TV, Homola T, Bryukvin A, Cameron DC (2018) Catalytic performance of Ag2O and Ag doped CeO2 prepared by atomic layer deposition for diesel soot oxidation. Coatings 8:237. https://doi.org/10.3390/coatings8070237

    Article  CAS  Google Scholar 

  42. Zeng L, Cui L, Wang C et al (2019) Ag-assisted CeO2 catalyst for soot oxidation. Front Mater Sci 13:288–295. https://doi.org/10.1007/s11706-019-0470-3

    Article  Google Scholar 

  43. Nascimento LF, Serra OA (2016) Washcoating of cordierite honeycomb with ceria-copper mixed oxides for catalytic diesel soot combustion. Process Saf Environ Prot 101:134–143. https://doi.org/10.1016/j.psep.2015.12.010

    Article  CAS  Google Scholar 

  44. Qu Z, Yu F, Zhang X et al (2013) Support effects on the structure and catalytic activity of mesoporous Ag/CeO2 catalysts for CO oxidation. Chem Eng J 229:522–532. https://doi.org/10.1016/j.cej.2013.06.061

    Article  CAS  Google Scholar 

  45. Ma L, Wang D, Li J et al (2014) Ag/CeO2 nanospheres: efficient catalysts for formaldehyde oxidation. Appl Catal B Environ 148–149:36–43. https://doi.org/10.1016/j.apcatb.2013.10.039

    Article  CAS  Google Scholar 

  46. Zhang H, Zhu A, Wang X et al (2007) Catalytic performance of Ag-Co/CeO2 catalyst in NO-CO and NO-CO-O2 system. Catal Commun 8:612–618. https://doi.org/10.1016/j.catcom.2006.08.012

    Article  CAS  Google Scholar 

  47. Kang Y, Sun M, Li A (2012) Studies of the catalytic oxidation of CO over Ag/CeO2 catalyst. Catal Lett 142:1498–1504. https://doi.org/10.1007/s10562-012-0893-2

    Article  CAS  Google Scholar 

  48. Caputo T, Lisi L, Pirone R, Russo G (2008) On the role of redox properties of CuO/CeO2 catalysts in the preferential oxidation of CO in H2-rich gases. Appl Catal A Gen 348:42–53. https://doi.org/10.1016/j.apcata.2008.06.025

    Article  CAS  Google Scholar 

  49. Landi G, Barbato PS, Di Benedetto A, Lisi L (2016) Optimization of the preparation method of CuO/CeO2 structured catalytic monolith for CO preferential oxidation in H2-rich streams. Appl Catal B Environ 181:727–737. https://doi.org/10.1016/j.apcatb.2015.08.040

    Article  CAS  Google Scholar 

  50. Yamazaki K, Kayama T, Dong F, Shinjoh H (2011) A mechanistic study on soot oxidation over CeO2-Ag catalyst with “rice-ball” morphology. J Catal 282:289–298. https://doi.org/10.1016/j.jcat.2011.07.001

    Article  CAS  Google Scholar 

  51. Tian JJ, Na W, Wang H, Gao WG (2014) Preparation and characterization of Cu-doped mesoporous CeO2 for CO oxidation. J Cent South Univ 21:482–486. https://doi.org/10.1007/s11771-014-1964-x

    Article  CAS  Google Scholar 

  52. Ma J, Jin G, Gao J et al (2015) Catalytic effect of two-phase intergrowth and coexistence CuO-CeO2. J Mater Chem A 3:24358–24370. https://doi.org/10.1039/c5ta06435j

    Article  CAS  Google Scholar 

  53. Haneda M, Towata A (2015) Catalytic performance of supported Ag nano-particles prepared by liquid phase chemical reduction for soot oxidation. Catal Today 242:351–356. https://doi.org/10.1016/j.cattod.2014.05.044

    Article  CAS  Google Scholar 

  54. Castoldi L, Aneggi E, Matarrese R et al (2015) Silver-based catalytic materials for the simultaneous removal of soot and NOx. Catal Today 258:405–415. https://doi.org/10.1016/j.cattod.2015.02.024

    Article  CAS  Google Scholar 

  55. Gardini D, Christensen JM, Damsgaard CD et al (2016) Visualizing the mobility of silver during catalytic soot oxidation. Appl Catal B Environ 183:28–36. https://doi.org/10.1016/j.apcatb.2015.10.029

    Article  CAS  Google Scholar 

  56. Sudarsanam P, Hillary B, Mallesham B et al (2016) Designing CuOx nanoparticle-decorated CeO2 nanocubes for catalytic soot oxidation: role of the nanointerface in the catalytic performance of heterostructured nanomaterials. Langmuir 32:2208–2215. https://doi.org/10.1021/acs.langmuir.5b04590

    Article  CAS  PubMed  Google Scholar 

  57. Weng D, Li J, Wu X, Lin F (2008) Promotional effect of potassium on soot oxidation activity and SO2-poisoning resistance of Cu/CeO2 catalyst. Catal Commun 9:1898–1901. https://doi.org/10.1016/j.catcom.2008.03.010

    Article  CAS  Google Scholar 

  58. Rico-Pérez V, Aneggi E, Trovarelli A (2017) The effect of Sr addition in Cu- and Fe-modified CeO2 and ZrO2 soot combustion catalysts. Catalysts 7:28. https://doi.org/10.3390/catal7010028

    Article  CAS  Google Scholar 

  59. Corro G, Pal U, Ayala E, Vidal E (2013) Diesel soot oxidation over silver-loaded SiO2 catalysts. Catal Today 212:63–69. https://doi.org/10.1016/j.cattod.2012.10.005

    Article  CAS  Google Scholar 

  60. Shimizu KI, Katagiri M, Satokawa S, Satsuma A (2011) Sintering-resistant and self-regenerative properties of Ag/SnO2 catalyst for soot oxidation. Appl Catal B Environ 108–109:39–46. https://doi.org/10.1016/j.apcatb.2011.08.003

    Article  CAS  Google Scholar 

  61. Shimizu KI, Kawachi H, Satsuma A (2010) Study of active sites and mechanism for soot oxidation by silver-loaded ceria catalyst. Appl Catal B Environ 96:169–175. https://doi.org/10.1016/j.apcatb.2010.02.016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Luciano Cortese for Hg intrusion porosimetry and SEM/EDX analysis. They also thank the IBIDEN company for providing commercial DPF samples.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Landi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Sarli, V., Landi, G., Di Benedetto, A. et al. Synergy Between Ceria and Metals (Ag or Cu) in Catalytic Diesel Particulate Filters: Effect of the Metal Content and of the Preparation Method on the Regeneration Performance. Top Catal 64, 256–269 (2021). https://doi.org/10.1007/s11244-020-01384-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01384-y

Keywords

Navigation